Publications
2025
From Gaze to Data: Privacy and Societal Challenges of Using Eye-tracking Data to Inform GenAI Models
Abdrabou, Y., Ozdel, S., Maquiling, V., Bozkir, E., & Kasneci, E. (2025). From gaze to data: Privacy and societal challenges of using eye-tracking data to inform GenAI models. In Proceedings of the 2025 Symposium on Eye Tracking Research and Applications (ETRA’25). Tokyo, Japan. https://doi.org/10.1145/3715669.3726788
PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education
Gao, H., Xie, Y., & Kasneci, E. (2025). PerVRML: ChatGPT-Driven Personalized VR Environments for Machine Learning Education. International Journal of Human–Computer Interaction, 1–15. https://doi.org/10.1080/10447318.2025.2504188
CUIfy the XR: An Open-Source Package to Embed LLM-powered Conversational Agents in XR
K. B. Buldu et al., 2025 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), Lisbon, Portugal, 2025, pp. 192-197, doi: 10.1109/AIxVR63409.2025.00037.
Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education
Bewersdorff, A., Hartmann, C., Hornberger, M., Seßler, K., Bannert, M., Kasneci, E., Kasneci, G., Zhai, X., & Nerdel, C. (2024). Taking the next step with generative artificial intelligence: The transformative role of multimodal large language models in science education. Learning and Individual Differences, 109, 102601. https://doi.org/10.1016/j.lindif.2024.102601
Towards Adaptive Feedback with AI: Comparing the Feedback Quality of LLMs and Teachers on Experimentation Protocols
Seßler, K., Bewersdorff, A., Nerdel, C., & Kasneci, E. (2025). Towards adaptive feedback with AI: Comparing the feedback quality of LLMs and teachers on experimentation protocols. arXiv preprint arXiv:2502.12842. https://doi.org/10.48550/arXiv.2502.12842
On opportunities and challenges of large multimodal foundation models in education
Küchemann, S., Avila, K. E., Dinc, Y., Hortmann, C., Revenga, N., Ruf, V., Stausberg, N., Steinert, S., F. Fischer, M. Fischer, Kasneci, E., Kasneci, G., Kuhr, T., Kutyniok, G., Malone, S., Sailer, M., Schmidt, A., Stadler, M., Weller, J., & Kuhn, J. (2025). On opportunities and challenges of large multimodal foundation models in education. npj Science of Learning, 10, Article 11. https://doi.org/10.1038/s41539-024-00265-7
Beyond the Script: Testing LLMs for Authentic Patient Communication Styles in Healthcare
Bodonhelyi, A., Stegemann-Philipps, C., Sonanini, A., Herschbach, L., Szep, M., Herrmann-Werner, A., Festl-Wietek, T., Kasneci, E., & Holderried, F. (2025). Modeling challenging patient interactions: LLMs for medical communication training. arXiv preprint arXiv:2503.22250. https://doi.org/10.48550/arXiv.2503.22250
Iris Style Transfer: Enhancing Iris Recognition with Style Features and Privacy Preservation through Neural Style Transfer
Wang, M., Bozkir, E., & Kasneci, E. (2025). Iris style transfer: Enhancing iris recognition with style features and privacy preservation through neural style transfer. Proceedings of the 2025 ACM Symposium on Eye Tracking Research & Applications (ETRA), Article 21. https://doi.org/10.1145/3729413
Modeling Challenging Patient Interactions: LLMs for Medical Communication Training
Bodonhelyi, A., Stegemann-Philipps, C., Sonanini, A., Herschbach, L., Szep, M., Herrmann-Werner, A., Festl-Wietek, T., Kasneci, E., & Holderried, F. (2025). Modeling challenging patient interactions: LLMs for medical communication training. arXiv preprint arXiv:2503.22250. https://doi.org/10.48550/arXiv.2503.22250
Trade-offs in Privacy-Preserving Eye Tracking through Iris Obfuscation: A Benchmarking Study
Wang, M., Bozkir, E., & Kasneci, E. (2025). Trade-offs in privacy-preserving eye tracking through iris obfuscation: A benchmarking study. arXiv preprint arXiv:2504.10267. https://doi.org/10.48550/arXiv.2504.10267
(25th International Conference on Digital Signal Processing (DSP 2025))
Exploring Context-aware and LLM-driven Locomotion for Immersive Virtual Reality
Özdel, S., Buldu, K. B., Kasneci, E., & Bozkir, E. (2025). Exploring context-aware and LLM-driven locomotion for immersive virtual reality. arXiv preprint arXiv:2504.17331. https://doi.org/10.48550/arXiv.2504.17331
Automated Visual Attention Detection using Mobile Eye Tracking in Behavioral Classroom Studies
Bozkir, E., Kosel, C., Seidel, T., & Kasneci, E. (2025). Automated visual attention detection using mobile eye tracking in behavioral classroom studies. arXiv preprint arXiv:2505.07552. https://doi.org/10.48550/arXiv.2505.07552
User Identification with LFI-Based Eye Movement Data Using Time and Frequency Domain Features
Ozdel, S., Meyer, J., Abdrabou, Y., & Kasneci, E. (2025). User identification with LFI-based eye movement data using time and frequency domain features. arXiv preprint arXiv:2505.07326. https://doi.org/10.48550/arXiv.2505.07326
Examining the Role of LLM-Driven Interactions on Attention and Cognitive Engagement in Virtual Classrooms
Ozdel, S., Sarpkaya, C., Bozkir, E., Gao, H., & Kasneci, E. (2025). Examining the role of LLM-driven interactions on attention and cognitive engagement in virtual classrooms. arXiv preprint arXiv:2505.07377. https://doi.org/10.48550/arXiv.2505.07377
Multimodal Assessment of Classroom Discourse Quality: A Text-Centered Attention-Based Multi-Task Learning Approach
Hou, R., Bühler, B., Fütterer, T., Bozkir, E., Gerjets, P., Trautwein, U., & Kasneci, E. (2025). Multimodal assessment of classroom discourse quality: A text-centered attention-based multi-task learning approach. arXiv preprint arXiv:2505.07902. https://doi.org/10.48550/arXiv.2505.07902
Bodonhelyi, A., Thaqi, E., Özdel, S., Bozkir, E., & Kasneci, E. (2025). In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (Article 16, pp. 1–21). Association for Computing Machinery. https://doi.org/10.1145/3706598.3713513
LEyes: A lightweight framework for deep learning-based eye tracking using synthetic eye images
Byrne, S. A., Maquiling, V., Nyström, M., & others. (2025). LEyes: A lightweight framework for deep learning-based eye tracking using synthetic eye images. Behavior Research Methods, 57(1), 129. https://doi.org/10.3758/s13428-025-02645-y
Europe’s AI Imperative - A Pragmatic Blueprint for Global Tech Leadership
Kasneci, G., Gasser, U., Hofmann, T. F., Kramer, G., Müller, G., Peus, C., Schönenberger, H., & Kasneci, E. (2025). Europe’s AI Imperative – A Pragmatic Blueprint for Global Tech Leadership. https://doi.org/10.31235/osf.io/8uyrc_v1