Thema Nr. 3 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten! Alle Lösungsschritte sind sorgfältig zu begründen!

Aufgabe 1 (12 Punkte)

Sei $n \ge 1$, sei K ein Körper, sei $\operatorname{Mat}_n(K)$ der Ring der $n \times n$ Matrizen über K, und sei $A \in \operatorname{Mat}_n(K)$. Bekanntlich ist das $\operatorname{Minimal polynom}$ von A das eindeutig bestimmte normierte Polynom $\mu_A \in K[X]$ minimalen Grades, das $\mu_A(A) = 0_{n,n}$ erfüllt.

- a) Sei $m \ge 1$ und $B \in \operatorname{Mat}_m(K)$. Des Weiteren sei $C \in \operatorname{Mat}_{n+m}(K)$ die Blockdiagonalmatrix $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Beweisen Sie, dass μ_C ein kleinstes gemeinsames Vielfaches von μ_A und μ_B ist.
- b) Entscheiden Sie begründet, ob es eine Matrix $A \in Mat_6(\mathbb{R})$ mit charakteristischem Polynom $X^6 + X^4$ und Minimalpolynom μ_A vom Grad 5 gibt.

Aufgabe 2 (12 Punkte)

- a) Sei \mathbb{F}_3 der Körper mit drei Elementen, und sei G die Menge der oberen Dreiecksmatrizen in $\operatorname{Mat}_3(\mathbb{F}_3)$ mit Einsen auf der Hauptdiagonale. Zeigen Sie, dass G eine nichtabelsche Untergruppe von $\operatorname{GL}_3(\mathbb{F}_3)$ der Ordnung 27 ist.
- b) Bestimmen Sie 12 paarweise nicht isomorphe Gruppen der Ordnung 2025.

Aufgabe 3 (12 Punkte)

a) Zerlegen Sie die Polynome $X^6 - Y^6$ und $X^5Y + X^3Y^3 + XY^5$ im faktoriellen Ring $\mathbb{Q}[X,Y]$ in Primfaktoren.

Hinweis: Es sind jeweils vier Primfaktoren.

b) Finden Sie alle Paare von Polynomen $(f,g) \in \mathbb{Q}[X,Y]^2$ mit

$$f \cdot (X^6 - Y^6) + g \cdot (X^5Y + X^3Y^3 + XY^5) = 0.$$

Aufgabe 4 (12 Punkte)

Für $a \in \mathbb{Z}$ sei $f_a = X^4 + a X^2 + 1 \in \mathbb{Q}[X]$. Mit $\operatorname{Gal}(f_a)$ werde im Folgenden die Galois-Gruppe des in \mathbb{C} enthaltenen Zerfällungskörpers von f_a über \mathbb{Q} bezeichnet.

- a) Finden Sie ein $a \in \mathbb{Z}$, sodass die Galois-Gruppe $Gal(f_a)$ nur aus der Identität besteht.
- b) Finden Sie ein $a \in \mathbb{Z}$, sodass die Galois-Gruppe $Gal(f_a)$ nur aus der Identität und der komplexen Konjugation besteht.
- c) Bestimmen Sie den Isomorphietyp der Galois-Gruppe $Gal(f_a)$ im Fall a=-1.

Aufgabe 5 (12 Punkte)

Sei $R = \mathbb{Z}[\sqrt{3}]$, sei $K = \mathbb{Q}(\sqrt{3})$, und sei $N_K : K \longrightarrow \mathbb{Q}$ die Normabbildung, die gegeben ist durch $N_K(a + b\sqrt{3}) = a^2 - 3b^2$ für $a, b \in \mathbb{Q}$.

- a) Beweisen Sie, dass es zu $x \in R$ und $y \in R \setminus \{0\}$ ein Element $q \in R$ gibt mit $|N_K(\frac{x}{y} q)| < 1$. Hinweis: Schreiben Sie $\frac{x}{y}$ in der Form $a + b\sqrt{3}$ mit $a, b \in \mathbb{Q}$.
- b) Sei $N_R: R \longrightarrow \mathbb{Z}$ die Einschränkung der Abbildung N_K . Zeigen Sie, dass R bezüglich der Abbildung $|N_R|$ ein euklidischer Ring ist, d. h. zu zwei Elementen $x, y \in R$ mit $y \neq 0$ gibt es Elemente $q, r \in R$ mit x = qy + r und $|N_R(r)| < |N_R(y)|$.