Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu versehen; Lösungen, die nur aus Rechnungen bestehen, erhalten keinen Punkt. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1:

Es sei $\Omega := \mathbb{C} \setminus [-1, 1] = \mathbb{C} \setminus \{z \in \mathbb{C} \mid -1 \leq \operatorname{Re}(z) \leq 1, \operatorname{Im}(z) = 0\}.$ Beweisen Sie die folgenden Aussagen.

- (a) Auf Ω existiert keine holomorphe Logarithmusfunktion der Funktion $z \mapsto f(z) = \frac{1}{z^2-1}$, d.h. es gibt keine holomorphe Funktion $g: \Omega \to \mathbb{C}$ mit $e^{g(z)} = f(z)$ für alle $z \in \Omega$.
- (b) Auf Ω existiert eine holomorphe Logarithmusfunktion der Funktion $z \mapsto h(z) = i \frac{z+1}{z-1}$, d.h. eine holomorphe Funktion $w: \Omega \to \mathbb{C}$ mit $e^{w(z)} = h(z)$ für alle $z \in \Omega$.

(3+3 Punkte)

Aufgabe 2:

Betrachten Sie die Sinus-Cardinalis-Funktion

$$f(x) = \frac{\sin(x)}{x}$$

für $x \in \mathbb{R} \setminus \{0\}$.

- a) Zeigen Sie, dass f zu einer ganzen Funktion fortgesetzt werden kann.
- b) Zeigen Sie, dass die fortgesetzte Funktion über $\mathbb R$ uneigentlich Riemann-integrierbar, aber nicht absolut integrierbar ist.

(2+4 Punkte)

Aufgabe 3:

Für $u_0 \in \mathbb{R}$ betrachte man das folgende Anfangswertproblem

$$\begin{cases} u(0) = u_0, \\ u'(t) = u(t) + \frac{1}{1+t} & t \ge 0. \end{cases}$$

Zeigen Sie:

- (i) Für jedes u_0 existiert eine eindeutige Lösung auf ganz \mathbb{R}^+ .
- (ii) $\lim_{t\to+\infty} u(t) = +\infty$ für jedes $u_0 \ge 0$.
- (iii) Es existiert ein $u_0 < 0$, sodass $\lim_{t \to +\infty} u(t) = -\infty$.
- (iv) Es existiert ein $\alpha < 0$, sodass $\lim_{t \to +\infty} u(t) = +\infty$ für jedes $u_0 > \alpha$, $\lim_{t \to +\infty} u(t) = -\infty$ für jedes $u_0 < \alpha$, und $\lim_{t \to \infty} u(t) \in \mathbb{R}$ für $u_0 = \alpha$.

(1+1+1+3 Punkte)

Aufgabe 4:

Sei $f \colon [0,\infty) \to [0,\infty)$ stetig mit $\int_0^\infty f(t) \, dt = \infty$, und sei $x \colon [0,\infty) \to \mathbb{R}$ eine Lösung der Differentialgleichung

$$\ddot{x} + f(t) x = 0$$
 mit $x(0) = 1$.

Zeigen Sie:

Die Lösung x besitzt unendlich viele Nullstellen, die keinen Häufungspunkt besitzen, in jeder Nullstelle hat x eine von Null verschiedene Ableitung, und zwischen zwei benachbarten Nullstellen ist x entweder positiv und konkav oder negativ und konvex.

(6 Punkte)

Aufgabe 5:

Sei
$$f \colon \mathbb{C} \to \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} a_k z^k$$
 holomorph.

(a) Stellen Sie für $k \in \mathbb{N}_0$ und r > 0 die Koeffizienten a_k der obigen Potenzreihe durch ein Wegintegral über $\{z \in \mathbb{C} \mid |z| = r\}$ dar. Folgern Sie daraus:

$$|a_k| \le r^{-k} \max_{|z|=r} |f(z)|.$$

(b) Für ein $n \in \mathbb{N}_0$ gelte zusätzlich $\limsup_{|z| \to \infty} |z|^{-n} |f(z)| < \infty$.

Zeigen Sie, dass f ein Polynom vom Grad $\leq n$ ist.

(c) Für ein $n \in \mathbb{N}_0$ gelte nun zusätzlich $\liminf_{|z| \to \infty} |z|^{-n} |f(z)| > 0$.

Zeigen Sie, dass f ein Polynom vom $\operatorname{Grad} \geq n$ ist.

(Hinweis: Untersuchen Sie 1/f. Spalten Sie dazu zunächst mögliche Nullstellen von f ab.)

(1+2+3 Punkte)