Thema Nr. 2 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu versehen; Lösungen, die nur aus Rechnungen bestehen, erhalten keinen Punkt. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1:

Welche der folgenden Aussagen sind wahr bzw. falsch? Begründen Sie Ihre Antwort.

- i) Es sei $f:[0,1]\to\mathbb{R}$ stetig differenzierbar mit $f(0)=0,\,f(1)=1.$ Dann gibt es ein $t\in(0,1)$ mit f'(t)=1.
- ii) Ist $A\subseteq\mathbb{R}^2$ abgeschlossen und $f\colon A\to\mathbb{R}$ stetig, so ist f beschränkt.
- iii) Es sei $f: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar und nicht konstant, sowie $U \subseteq \mathbb{R}$ offen. Dann ist f(U) offen.
- iv) Es sei $f:\mathbb{C}\to\mathbb{C}$ komplex differenzierbar und nicht konstant, sowie $U\subseteq\mathbb{C}$ offen. Dann ist f(U) offen.
- v) Es gibt eine bijektive holomorphe Funktion $f: \mathbb{C} \to \{z \in \mathbb{C} : |z| < 1\}$.
- vi) Es gibt eine holomorphe Funktion $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit $f'(z) = \frac{1}{z}$ für alle $z \in \mathbb{C}$.

(6 Punkte)

Aufgabe 2:

a) Bestimmen Sie die Laurentreihen-Entwicklung mit Entwicklungspunkt $z_0=0$ von

$$f(z) = \frac{1}{(z-1)(z+1)} + \frac{\sin z}{z^2}$$

im Gebiet $\{z \in \mathbb{C} : 0 < |z| < 1\}.$

- b) Bestimmen Sie alle isolierten Singularitäten von f und deren Typ.
- c) Berechnen Sie

$$\int_{|z-1|=\frac{3}{2}} f(z) \, dz.$$

(6 Punkte)

Aufgabe 3:

Es sei $h: \mathbb{C} \to \mathbb{C}$ holomorph mit $|h(z)| \leq 2$ für alle |z| = 2 und $f: \mathbb{C} \to \mathbb{C}$ definiert durch

$$f(z) = h(z)^3 + 4z^2 - z + 1$$
 für alle $z \in \mathbb{C}$.

- a) Bestimmen Sie die Zahl der Nullstellen (gezählt mit Vielfachheit) von f im Gebiet $\{z\in\mathbb{C}:|z|<2\}.$
- b) Sei nun $h(z) = \frac{z}{2}$ für alle $z \in \mathbb{C}$. Bestimmen Sie die Zahl der Nullstellen von f in $\{z \in \mathbb{C} : 1 < |z| < 2\}$.

(6 Punkte)

Aufgabe 4:

Gegeben sei das Differentialgleichungssystem

$$y'(t) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix} y(t).$$

- a) Bestimmen Sie ein Fundamentalsystem für dieses Differentialgleichungssystem.
- b) Bestimmen Sie die Lösung dieses Differentialgleichungssystems mit dem Anfangswert

$$y(0) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

c) Ist die Nulllösung für dieses Differentialgleichungssystem stabil?

(6 Punkte)

Aufgabe 5:

- a) Es sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $f(t,y) = e^t \sin y$ für alle $t,y \in \mathbb{R}$. Zeigen Sie, dass f lokal Lipschitzstetig bezüglich y ist.
- b) Zeigen Sie, dass das Anfangswertproblem

$$y'(t) = e^t \sin(y(t)), \quad t > 0,$$

 $y(0) = 1$

eine eindeutige Lösung $y\colon [0,\infty)\to \mathbb{R}$ besitzt.

c) Zeigen Sie, dass y(t)>0 für alle $t\geq 0$ gilt, wobei y die Lösung aus Aufgabenteil b) bezeichne.

(6 Punkte)