Thema Nr. 3 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Bei den folgenden Aufgaben sind alle Schlussfolgerungen und nichttrivialen Rechnungen mit einem erklärenden Text zu begründen! Auf jede Aufgabe werden maximal 6 Punkte vergeben; die höchste erreichbare Punktzahl beträgt somit 30 Punkte.

Bezeichnungen: Sei $\mathbb{D}:=\{z\in\mathbb{C}\mid |z|<1\}$ und $\overline{\mathbb{D}}:=\{z\in\mathbb{C}\mid |z|\leq 1\}$.

Aufgabe 1:

(drei Kurzaufgaben zur Funktionentheorie)

- a) Begründen Sie, dass die Funktion $f(z) = \frac{1}{z^2 2z + 2}$ eine konvergente Potenzreihen-Entwicklung um z = 0 besitzt und geben Sie deren Konvergenzradius an.
- b) Bestimmen Sie alle holomorphen Funktionen $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit $|f(z)| \geq \frac{1}{|z|}$ für alle $z \neq 0$.
- c) Bestimmen Sie alle ganzen Funktionen $f: \mathbb{C} \to \mathbb{C}$ mit $f \circ f = f$.

Aufgabe 2:

Zeigen Sie, dass die Funktion $f: \mathbb{C} \to \mathbb{C}$, $f(z) := z^3 + 2z + ce^{z^2}$ für alle $c \in \mathbb{C}$ mit $|c| < e^{-1}$ genau eine Nullstelle im Einheitskreis $\overline{\mathbb{D}}$ besitzt.

Aufgabe 3:

Berechnen Sie für $\omega > 0$ das Integral

$$\int_{-\infty}^{\infty} \frac{e^{i\omega x}}{x^2 + x + 1} dx := \lim_{r \to \infty} \int_{-r}^{r} \frac{e^{i\omega x}}{x^2 + x + 1} dx.$$

Hinweis: Betrachten Sie das obige Integral längs eines geeigneten, geschlossenen Wegs in der komplexen Ebene und gehen Sie zum "Grenzwert" über. Führen Sie dabei alle nötigen Abschätzungen explizit aus.

Aufgabe 4:

Gegeben sei das ebene autonome System

$$\frac{\mathrm{d}x}{\mathrm{d}t} = y\cos x$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \sin x.$$

- a) Begründen Sie, warum das obige System für jeden Anfangswert (x_0, y_0) eindeutig lösbar ist und warum die Lösungen für alle $t \in \mathbb{R}$ existieren.
- b) Bestimmen Sie alle Ruhelagen des Systems und untersuchen Sie diese auf Stabilität.

Aufgabe 5:

Gegeben sei die homogene lineare Differentialgleichung 3. Ordnung

$$(*) \qquad \frac{\mathrm{d}^3 x}{\mathrm{d}t^3} + x = 0.$$

- a) Bestimmen Sie die allgemeine Lösung x(t) von (*).
- b) Bestimmen Sie alle Startwerte $(x(0), \dot{x}(0), \ddot{x}(0)) \in \mathbb{R}^3$, so dass für deren eindeutige Lösung x(t) gilt:

$$\lim_{t\to\infty}x(t)=0.$$