Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu versehen; Lösungen, die nur aus Rechnungen bestehen, erhalten keinen Punkt. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1:

(2 + 4 Punkte) Gegeben seien das Ellipsoid

$$E := \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + 4y^2 + z^2 \le 9\}$$

und die Funktion $f \colon \mathbb{R}^3 \to \mathbb{R}$ mit

$$f(x, y, z) := x + 4y - 2z + 9$$
 für $(x, y, z) \in \mathbb{R}^3$.

- a) Begründen Sie, dass die Funktion f auf E ihr Maximum und Minimum annimmt.
- b) Bestimmen Sie die Maximum- und Minimumstellen von f auf E.

Aufgabe 2:

(1 + 3 + 2 Punkte) Gegeben sei das autonome Differentialgleichungssystem

$$\begin{cases} \dot{x} = 2 - xy^2 \\ \dot{y} = (x-2)y \end{cases}.$$

- a) Bestimmen Sie alle Ruhelagen des Systems.
- b) Untersuchen Sie alle Ruhelagen auf asymptotische Stabilität.
- c) Sei $J \subset \mathbb{R}$ das maximale Existenzintervall der eindeutigen Lösung mit Anfangswert $(x(0), y(0)) \in \mathbb{R} \times \mathbb{R}^+$. Begründen Sie, dass y(t) > 0 für alle $t \in J$ gilt.

Aufgabe 3:

(2+4 Punkte)

a) Bestimmen Sie alle Lösungen der folgenden Differentialgleichung zweiter Ordnung:

$$\ddot{x} - x = e^t$$

b) Die Funktionen $\varphi_1, \varphi_2, \varphi_3 : \mathbb{R} \to \mathbb{R}$ sind gegeben durch

$$\varphi_1(t) := 1,$$

$$\varphi_2(t) := t,$$

$$\varphi_3(t) := t^2$$

für alle $t \in \mathbb{R}$. Über eine lineare inhomogene Differentialgleichung zweiter Ordnung ist bekannt, dass φ_1 , φ_2 und φ_3 Lösungen sind. Geben Sie die Menge aller Lösungen dieser Differentialgleichung an. Die Differentialgleichung selbst brauchen Sie dabei nicht zu bestimmen.

Aufgabe 4:

(2 + 4 Punkte)

a) Bestimmen Sie die Anzahl der Nullstellen (gezählt mit Vielfachheiten) für die Funktion $f: \mathbb{C} \to \mathbb{C}$, gegeben durch

$$f(z) = z^{42} - 5z^4 + iz^3 + z^2 - iz$$
 für $z \in \mathbb{C}$,

im offenen Einheitskreis $B_1(0) := \{z \in \mathbb{C} : |z| < 1\}.$

b) Berechnen Sie

$$\int_{-\infty}^{\infty} \frac{1+x^2}{1+x^4} \, dx.$$

Aufgabe 5:

(2+4 Punkte) Sei $G: [0,1]^2 \to \mathbb{R}$ gegeben durch

$$G(x,y) := \begin{cases} y(x-1) & \text{für } y \le x, \\ x(y-1) & \text{für } y > x. \end{cases}$$

a) Sei $f:[0,1]\to\mathbb{R}$ stetig. Zeigen Sie, dass die Funktion $u:[0,1]\to\mathbb{R}$, gegeben durch

$$u(x) := \int_0^1 G(x, y) f(y) dy$$
 für $x \in [0, 1],$

zweimal stetig differenzierbar ist mit

$$u''(x) = f(x)$$
 auf $[0,1]$, $u(0) = 0 = u(1)$,

b) Zeigen Sie, dass durch

$$u_0(x) := 0$$
, $u_{n+1}(x) := \int_0^1 G(x, y) \cos(u_n(y)) dy$ für $x \in [0, 1]$ und $n \in \mathbb{N}_0$

eine Folge stetiger Funktionen auf [0,1] definiert wird, die auf [0,1] gleichmäßig gegen eine zweimal stetig differenzierbare Funktion $u:[0,1] \to \mathbb{R}$ konvergiert mit

$$u''(x) = \cos(u(x))$$
 auf $[0, 1]$, $u(0) = 0 = u(1)$.