Thema Nr. 1 (Aufgabengruppe)

Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten!

Alle Rechnungen und Schlussfolgerungen sind mit einem erklärenden Text zu versehen; Lösungen, die nur aus Rechnungen bestehen, erhalten keinen Punkt. Auf jede Aufgabe werden maximal 6 Punkte vergeben.

Aufgabe 1: (2+4 Punkte)

(a) Finden Sie eine holomorphe Funktion $f: \mathbb{C} \setminus \{-1,1\} \to \mathbb{C}$, welche in den Punkten -1 und 1 wesentliche Singularitäten mit den Residuen

$$Res_{-1}(f) = -1, Res_1(f) = 1$$

besitzt. Ist f durch diese Eigenschaften eindeutig bestimmt?

(b) Sei f die in (a) gefundene Funktion. Für $\alpha \in [0, \infty[$ sei γ_{α} der geschlossene Weg, der die Punkte

$$2 + \alpha i$$
, $-2 - i$, $-2 + i$, $2 - \alpha i$, $2 + \alpha i$

in der angegebenen Reihenfolge durch Geradenstücke verbindet. Für welche Werte von α ist das komplexe Wegintegral

$$\int_{\gamma_{\alpha}} f(z) \, dz$$

definiert? Berechnen Sie das Integral für diese Werte von α .

Aufgabe 2: (3+3 Punkte)

(a) Zeigen Sie für alle natürlichen Zahlen n

$$\sum_{k=1}^{n} (4k^3 - 6k^2) = n^4 - 2n^2 - n.$$

(b) Zeigen Sie durch Induktion in n, dass für $G_r(k) := \prod_{\ell=0}^{r-1} (k+\ell)$ (also mit $G_0(k)=1$) die Formeln

$$\sum_{k=1}^{n} G_r(k) = \frac{1}{r+1} G_{r+1}(n)$$

gelten, für alle $r \in \mathbb{N} \cup \{0\}$ und alle $n \in \mathbb{N}$.

Aufgabe 3: (2+4 Punkte)

 $\overline{\text{Sei } D := \{x \in \mathbb{R}^2 \mid |x| := \sqrt{x_1^2 + x_2^2} < 1\} \text{ und } f \colon D \to \mathbb{R}^2, \, f(x) := ((1 - |x|)^{-1}, |x|).$ Zeigen Sie:

(a) Das Anfangswertproblem

$$\dot{x} = f(x), \ x(0) = 0$$

besitzt eine eindeutig bestimmte, maximale Lösung.

(b) Für diese maximale Lösung $x\colon]a,b[\to \ D, \ {
m wobei} \ -\infty \ \le \ a \ < \ 0 \ < \ b \ \le \ \infty, \ {
m ist} \ b \ \le \ 1,$ $x(b) := \lim_{t \to b} x(t)$ existiert, und |x(b)| = 1, $0 < x_2(b) < 1/4$. **Hinweis:** Die Trajektorie der Lösung lässt sich als Graph einer Funktion darstellen und

deren Ableitung lässt sich geeignet abschätzen.

Aufgabe 4: (4+2) Punkte

(a) Sei $f \colon \mathbb{R} \to \mathbb{R}$ stetig differenzierbar. Zeigen Sie, dass für jede Lösung der Differentialgleichung

$$\dot{x} = f(x)$$

genau eine der folgenden Aussagen zutrifft:

- (i) x ist streng monoton wachsend.
- (ii) x ist streng monoton fallend.
- (iii) x ist konstant.
- (b) Bleibt die Aussage in (a) richtig, wenn $f: \mathbb{R} \to \mathbb{R}$ nur als stetig vorausgesetzt wird?

Aufgabe 5: (3+3) Punkte

(a) Für $n \in \mathbb{N}$ sei $f_n : [0, \infty[\to \mathbb{R}, f_n(x) := \frac{x}{n^2} e^{-\frac{x}{n}}]$. Zeigen Sie, dass die Folge $(f_n)_{n \in \mathbb{N}}$ auf $[0, \infty[$ gleichmäßig gegen 0 konvergiert, und bestimmen Sie

$$\lim_{n\to\infty}\int_0^\infty f_n(x)\,dx.$$

(b) Sei $f: [0,1] \to \mathbb{R}$ stetig mit f(0) = 0. Bestimmen Sie

$$\lim_{n\to\infty}\int_0^1 f(x^n)\,dx.$$