Thema Nr. 1 (Aufgabengruppe)

Es sind <u>alle</u> Aufgaben dieser Aufgabengruppe zu bearbeiten!

Vorbemerkung:

Begründen Sie alle Antworten und versehen Sie Rechnungen mit einem kurzen Text.

Aufgabe 1:

Es sei G endliche Gruppe mit 2007 Elementen. Zeigen Sie:

- a) Die Gruppe G besitzt eine normale 223-Sylow-Gruppe N.
- b) Die Operation von G auf N durch Konjugation induziert eine Operation der Faktorgruppe G/N auf N und G/N enthält eine Untergruppe H der Ordnung drei, die trivial auf N operiert.
- c) Folgern Sie, dass die Gruppe G einen abelschen Normalteiler der Ordnung 669 enthält. (6 Punkte)

Aufgabe 2:

Betrachten Sie den endlichen Körper \mathbb{F}_5 mit fünf Elementen, das Polynom $f(X) = X^3 + X + 1 \in \mathbb{F}_5[X]$ und den Quotientenring $K = \mathbb{F}_5[X]/(f(X))$. Weiter bezeichne α die Restklasse von X modulo (f(X)).

- a) Zeigen Sie, dass K ein Körper mit 125 Elementen und dass $(1, \alpha, \alpha^2)$ eine \mathbb{F}_5 -Basis von K ist.
- b) Bestimmen Sie die Matrix $M \in GL_3(\mathbb{F}_5)$, die den Frobenius-Automorphismus $F: K \to K$, $x \longmapsto x^5$, bezüglich der Basis $(1, \alpha, \alpha^2)$ darstellt.
- c) Bestimmen Sie eine Basis für den Eigenraum von F zum Eigenwert 1. (6 Punkte)

Aufgabe 3:

Bestimmen Sie einen Zerfällungskörper L für das Polynom

$$f(X) = (X^2 - 3)(X^3 + 5) \in \mathbb{Q}[X]$$

und den Isomorphietyp der Galois-Gruppe $\operatorname{Gal}(L/\mathbb{Q}).$

(6 Punkte)

Aufgabe 4:

Zeigen Sie:

- a) Ist R ein Hauptidealring, so ist jedes vom Nullideal verschiedene Primideal in R ein maximales Ideal.
- b) Ist R ein Integritätsring und der Polynomring R[X] ein Hauptidealring, so ist R ein Körper. (6 Punkte)

Aufgabe 5:

- a) Prüfen Sie jeweils, ob die alternierende Gruppe A_4 ein Element der Ordnung 6 oder eine Untergruppe der Ordnung 6 enthält (Antwort mit Begründung).
- b) Geben Sie das kleinste n an, so dass A_n eine Untergruppe der Ordnung 6 enthält und das kleinste n, so dass A_n ein Element der Ordnung 6 enthält.

(6 Punkte)