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Virtual Reality (VR) and Generative Artificial Intelligence (Gen-AI) are transforming personalized learning,
particularly in intangible cultural heritage (ICH) education. However, designing immersive experiences that
enhance engagement without overwhelming learners presents a challenge. This study examines the impact of
personalized AI narration on user engagement and attention in a VR environment through eye-trackingmetrics.
In a controlled experiment with 54 participants, we explored three levels of personalization (high, moderate,
none) in a Neapolitan pizza-making task, measuring attention and cognitive load through fixation duration,
saccade duration, and pupil diameter. Results indicate that high personalization increased engagement by 64.1%
over no personalization (𝑝 < 0.001). Furthermore, regression analysis reveals specific eye-tracking metrics
significantly predict gameplay duration, underscoring eye-tracking’s potential to capture real-time engagement.
These findings support the use of eye-tracking to inform the development of adaptive VR learning experiences.
Future work may integrate subjective assessments to better understand users’ underlying motivations.
CCS Concepts: • Human-centered computing→ User studies; Virtual reality; • Computing method-
ologies → Artificial intelligence; • Applied computing→ Interactive learning environments.
Additional Key Words and Phrases: Generative AI, VR, Eye-Tracking, Intangible Cultural Heritage, Education
Technologies

1 Introduction
Intangible cultural heritage (ICH) encompasses a wide array of traditional practices, with ‘cuisine’
particularly representing not only the food itself but also the associated rituals and cultural identities
they embody [10, 14, 40, 77, 78]. Recognized by UNESCO in 2017, Neapolitan pizza-making exempli-
fies ICH through its reflection of the cultural values and skills of Naples, Italy [11, 62, 68]. However,
globalization and the fast-food industry’s influence have significantly challenged the transmission
of traditional knowledge, especially among younger generations [29, 57, 81]. As fast-paced lifestyles
prioritize convenience, fewer people have the patience for the hands-on processes that traditional
practices require. This growing gap makes the preservation and effective transmission of these
cultural elements more critical than ever.
The advancement of new technologies such as Virtual Reality (VR) and Generative Artificial

Intelligence (Gen-AI) offer innovative solutions to these challenges by providing immersive and
adaptive learning experiences. VR enables learners to interact dynamically with cultural practices
in a highly immersive environment, while Gen-AI personalizes content to individual preferences,
enhancing engagement and learning effectiveness. Despite their potential, traditional cultural
institutions like Galleries, Libraries, Archives, and Museums (GLAM) often struggle to provide
dynamic and interactive experiences necessary for immersive, skill-based learning required in
ICH [15, 21, 37, 51, 65]. These institutions typically rely on static formats that struggle to engage
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diverse audiences and support varied learning styles, highlighting the need for more engaging and
personalized educational tools [32, 34].

Theories such as Self-Determination Theory (SDT) [59] and Cognitive Load Theory (CLT) [79]
offer a foundational framework for understanding how personalized AI strategies can enhance
learning in VR environments. As VR applications increasingly aim to keep learners motivated and
cognitively engaged, SDT emphasizes fulfilling psychological needs for autonomy, competence,
and relatedness to foster intrinsic motivation and sustained engagement [59]. In this context, per-
sonalized Gen-AI in VR meets these needs by offering tailored guidance and interactions, providing
targeted feedback aligned with individual goals, and thereby enhancing engagement, retention,
and motivation [82]. Meanwhile, CLT focuses on managing cognitive resources to optimize learn-
ing [71]. By personalizing content through Gen-AI, the experience reduces extraneous cognitive
load (effort spent on irrelevant information) and enhances germane cognitive load, directing cogni-
tive resources to essential learning. This balance allows learners to process information effectively
without feeling overwhelmed, creating a more engaging and meaningful learning experience.

To explore how Gen-AI-driven personalization in VR can enrich cultural heritage learning,
we designed “Neapolitan Pizza VR,” a virtual kitchen inspired by the “Cooking as Inquiry” ap-
proach [8, 38]. This setup allows users to learn pizza-making techniques based on their culinary
style. Integrating Gen-AI into VR enables dynamic adjustments to educational content based on
user background and interactions, making the learning experience more immersive and tailored to
individual needs.

This study addresses the following research questions:
• RQ1: How effective are personalized AI strategies in VR environments for enhancing
engagement in learning Neapolitan pizza-making?

• RQ2: In what ways do AI personalization strategies affect user cognitive load, attention,
and engagement, as measured by eye-tracking metrics, within a VR-based cultural heritage
setting?

In a between-subjects designwith 54 participants, we evaluated the effects of three personalization
levels (High, Moderate, and No personalization) on cognitive load, attention, and engagement in
learning Neapolitan pizza-making. Our findings indicate that personalized AI significantly enhanced
user engagement and attention, as evidenced by eye-tracking metrics, fostering further interest in
cultural activities. These results underscore the impact of AI-driven personalization on cultural
heritage education in VR and offer practical insights for educators. Our contributions are threefold:

(1) We developed an immersive VR kitchen centered on Neapolitan pizza-making, incorporating
personalized Gen-AI not only to provide guided learning and support cultural heritage
preservation but also to enhance user engagement through tailored interactions.

(2) We find that personalization captures user attention more effectively, as evidenced by time
to first fixation and saccade duration metrics, while not significantly increasing cognitive
load.

(3) We demonstrate that eye-tracking metrics, specifically mean fixation and saccade durations,
are reliable predictors of gameplay duration, indicating these measures can effectively
capture user engagement in VR learning contexts.

2 Related Work
2.1 Personalized Narrations for Cultural Education
Gen-AI has expanded the possibilities for personalized, learner-centered education, moving away
from traditional one-size-fits-all approach. Through adaptable, tailored content, Gen-AI has shown
promise in enhancing motivation, engagement, and critical thinking in educational contexts [22, 28,
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39, 48, 74]. Recent studies increasingly explore the synergy of VR and Gen-AI to create immersive,
dynamic learning environments that adapt to individual user needs [6, 23, 64, 70].
In cultural heritage contexts, personalization is especially valuable, as learners engage more

deeply with material that reflects their individual cultural backgrounds and preferences. Projects
like meSch [51] and PEACH [69] have led efforts to integrate personalization into cultural heritage,
exploring adaptive learning paths and user profiling to enhance visitor engagement. Research has
shown that personalized virtual tours and interactive exhibits increase engagement by aligning
content with users’ interests and prior knowledge [4, 52, 58, 80].
Recent advancements in large language models (LLMs) have further enabled virtual agents’

ability to deliver real-time, context-aware insights and engage users in personalized dialogues
within cultural heritage settings. Initiatives like “Ask Dali” [75] and “Awaken Sleeping Beau-
ties” [17] demonstrate how conversational AI can deepen engagement by enabling interactions
with historical personas. When embedded in VR environments, these models effectively provide a
multi-perspective exploration of cultural heritage [36, 49]. However, maintaining a balance in per-
sonalization remains challenging, as overly specific content may overwhelm users due to too many
choices and information overload, while insufficient personalization risks disengagement [25, 55].

Building on this groundwork, our study assesses three levels of personalization (high, moderate,
and none) to examine their effects on engagement, attention, and cognitive load in a VR-based
cultural heritage setting. Using eye-tracking data, we obtain a nuanced view of how personaliza-
tion impacts focus and mental effort, addressing a gap in the application of eye-tracking within
personalized VR learning environments for cultural heritage learning.

2.2 Eye-Tracking in VR: A Window to Human Cognitive Processes
Advancements in VR technology with high-resolution eye-tracking capabilities now enable re-
searchers to observe subtle cognitive processes in real-time and non-intrusively, enhancing edu-
cational experiences [2, 7]. VR’s immersive nature also supports behavioral studies that may be
impractical or ethically challenging in real-world settings. In this context, eye-tracking within VR
is a valuable tool for analyzing human behavior, widely used to measure cognitive load in diverse
settings, such as driving simulations [47], medical procedures [76], and work-safety training [26].
In cultural heritage contexts, eye-tracking has been applied primarily to study engagement with
tangible heritage like art galleries [19] and architecture [41]. While previous studies have focused
on engagement and information processing, eye-tracking can objectively measure user attention
and engagement, aligning with theoretical frameworks like SDT and CLT. Fixation duration, for
instance, can reveal how well SDT’s core learning needs are met by tracking sustained engage-
ment and attention [59, 72], while CLT’s emphasis on managing cognitive resources [71] aligns
with metrics such as pupil diameter and saccade duration, which indicate cognitive load without
overwhelming learners [5].

In VR educational settings, eye-tracking metrics are valuable for understanding student behavior.
Fixation duration and fixation count can indicate levels of attention and information processing,
while saccade metrics provide insights into visual scanning efficiency and cognitive engagement.
Objects of interest (OOI) help reveal how students allocate their visual attention [7, 18]. Additional
eye-tracking metrics have been applied in adaptive gameplay experiences, where longer fixation
and saccade durations can signify increased cognitive load [63]. Some studies also associate pupil
dilation with cognitive load, though this metric requires careful interpretation in VR due to its
sensitivity to external factors like lighting [63, 66]. Research by [63] further highlights time-to-
first-fixation (TTFF) and saccade amplitude as indicators of engagement. Shorter TTFF suggests
content that quickly captures attention, while saccade amplitude can reflect moments of surprise
or intrigue within an adaptive environment.
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Although eye-tracking in VR provides valuable insights, it may not fully capture the complexity
of cognition and behavior alone. In this study, we combine eye-tracking data with subjective
assessments to provide a more nuanced understanding of user engagement, evaluating whether
VR environments promote sustained, focused interaction with ICH content for more personalized
educational experiences.

3 Method
In this section, we describe the demographics of our participants, apparatus, experimental design,
technical implementation, procedure, data processing, measurements, and analysis. The Institutional
Review Board (IRB) of the Technical University of Munich granted approval for this user study,
ensuring adherence to ethical research standards.

3.1 Participants
The study involved 54 participants from diverse demographic backgrounds. Gender distribution was
nearly balanced with 22 male participants (41%), 31 female participants (57%), and one non-binary
participant (2%). Ages ranged from 18 to 54, with the majority in the 18–24 age group (46%) and the
25–34 age group (48%). Smaller percentages were in the 35–44 (4%) and 45–54 (2%) age brackets.

In terms of educational background, 15% of participants held a high school diploma, 40% held a
bachelor’s degree, 43% a master’s degree, and 2% a doctoral degree. Most participants (70%) had
prior experience with VR, while 30% were new to it.
Engagement with cultural heritage activities varied, with 9% engaging very frequently, 13%

frequently, 41% rarely, 33% very rarely, and 4% having no prior engagement. Cooking frequency at
home was also diverse, with 50% cooking very frequently, 29.6% frequently, 18.5% rarely, and 1.9%
never.

Eligibility criteria required participants to be at least 18 years old, have normal or corrected-to-
normal vision, and fluency in English. Individuals with a history of severe motion sickness were
excluded from the study. Each participant received a €10 voucher for their involvement at the end
of the experiment.

3.2 Apparatus
The VR setup used in this study is shown in Figure 1a. It consisted of a Varjo VR-31 (Model HS-6)
headset, paired with HTC Vive Controller 2.0 and HTC Vive Steam VR Base Station 2.0. The Varjo
VR-3 offers a 115◦ field of view, a 90 Hz refresh rate, a screen resolution of 1920 × 1920 per eye, and
is equipped with a built-in eye tracker that operating at a 200 Hz sampling rate.
The interactive VR game was developed using Unity (Version 2021.3.33f1). Key software exten-

sions included the Varjo XR Plugin2 (Version 3.6.0) for Varjo-specific support, the XR Interaction
Toolkit3 (Version 2.5.3), and XR Plugin Management4 (Version 4.4.0), both essential for Unity-based
VR development. Additionally, the OpenAI Unity5 package (Version 0.2.0) was integrated to enable
personalized AI interactions within the Unity game engine via OpenAI application programming
interface.

1https://varjo.com/products/varjo-vr-3/, last accessed on 21 June 2024
2https://github.com/varjocom/VarjoUnityXRPlugin, last accessed on 19 August 2024
3https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html, last accessed on 19 August
2024
4https://docs.unity3d.com/2023.2/Documentation/Manual/com.unity.xr.management.html, last accessed on 19 August 2024
5https://github.com/srcnalt/OpenAI-Unity.git, last accessed on 19 August 2024

https://varjo.com/products/varjo-vr-3/
https://github.com/varjocom/VarjoUnityXRPlugin
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html
https://docs.unity3d.com/2023.2/Documentation/Manual/com.unity.xr.management.html
https://github.com/srcnalt/OpenAI-Unity.git
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(a) Experiment setup. (b) Inside the VR experience.

Fig. 1. Overview of VR setup for data collection. (a) A participant using the Varjo VR-3 headset with HTC
Vive controllers to engage with the VR experience. (b) Interaction scene showing the avatar within the VR
environment.

3.3 Experimental Design
This study employed a between-subjects design with 54 participants randomly assigned to one of
three conditions: no personalization (control), moderate personalization, and high personalization.
The goal was to explore the impact of varying levels of personalized narration on cognitive load,
visual attention, and user engagement.

The independent variable was the level of personalization, structured as follows: the high
personalization condition dynamically adjusted narration based on both user interactions within
the VR environment and demographic data from pre-assessments, the moderate personalization
condition adapted narration according to ingredient choices selected by individual users, and the
no personalization condition presented a standardized, non-adaptive narration. These levels were
chosen to represent a spectrum of personalization, from fully adaptive to static, enabling a direct
comparison of their effects on the dependent variables. This controlled setup ensures that observed
differences in user responses can be directly attributed to the personalization level.

The dependent variables were cognitive load, visual attention, and user engagement within the
personalized learning environment. Cognitive load was assessed through eye-tracking metrics
associated with cognitive effort (e.g., pupil diameter, fixation duration and number of fixation).
Visual attention was measured by TTFF, saccade duration and saccade amplitude). User engagement
was evaluated through interaction log data in VR such as gameplay duration and questionnaire
responses on immersion and interest.

The experiment was divided into three stages, illustrated in Figure 2. In the initial (1) Onboarding
Stage, participants were greeted by a virtual agent and guided through the selection of pizza
toppings from a list of 12 ingredients, including both traditional and non-traditional options.
In the main (2) Gameplay Stage, participants followed traditional steps in Neapolitan pizza-

making, including dough preparation, mixing, kneading, and baking. Gen-AI provided real-time,
adaptive instructions based on each participant’s profile, with the level of personalization varying
by experimental condition.

Throughout the experience, participants had the opportunity to explore three (3) Posters related
to the history and cultural significance of Neapolitan pizza. The experiment concluded once
participants successfully completed their personalized pizza. The design followed a linear structure,
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guiding participants through the steps to bake the pizza in sequence, with personalization levels
tailored to each experimental condition.

Fig. 2. The experimental setup includes: (1) the Onboarding Stage with ingredient selection and narration
options, (2) the Gameplay Stage for hands-on pizza-making, and (3) the Poster Area featuring personalized
cultural content. Levels of personalization—none, moderate, and high—determine the extent of interaction
with the avatar and posters.

3.4 Technical Implementation
The technical implementation of ‘Neapolitan Pizza VR’ involved three main components: de-
veloping an immersive VR environment, designing a virtual coach, and enabling context-aware
personalization.

For the VR environment, we created an interactive simulation that guided participants through
the traditional steps of Neapolitan pizza-making, including ingredient selection, dough handling,
topping choices, and wood-fired oven baking, as shown in Figure 2.

The Virtual Coach was powered by OpenAI’s GPT-4 model, configured as a culturally informed
guide to enhance educational authenticity. To ensure accurate guidance and minimize AI-generated
inaccuracies, we applied prompt engineering with few-shot learning techniques [24, 60]. These
prompts provided Role definition and Instructional guidelines, framing the AI as a “cultural
ambassador” within the VR setting and specifying tone and response style [43].

For context-aware personalization, we used content from a massive open online course (MOOC)
on Neapolitan pizza-making6. GPT-47 generated culturally relevant responses and image prompts
for DALL-E8, guided by participants’ pre-questionnaire responses and ingredient selections. This
personalization extended to dynamically generated posters within the VR environment, where
GPT-4 and DALL-E collaboratively produced customized text and images aligned with each user’s
style and learning preferences.
To maintain accuracy, the virtual coach’s responses were controlled through stage-specific

prompts limited to the MOOC content. Figure 3 presents the architecture of the virtual agent,
incorporating GPT-4, OpenAI Whisper9 for speech-to-text (STT), the OpenAI Audio API10 for

6https://www.federica.eu/federica-pro/pizza-revolution/, last accessed on 18 October 2024
7https://openai.com/index/gpt-4-research/, last accessed on 21 June 2024
8https://openai.com/index/dall-e-3/, last accessed on 17 October 2024
9https://openai.com/index/whisper/, last accessed on 21 June 2024
10https://platform.openai.com/docs/guides/text-to-speech/quickstart, last accessed on 19 August 2024

https://www.federica.eu/federica-pro/pizza-revolution/
https://openai.com/index/gpt-4-research/
https://openai.com/index/dall-e-3/
https://openai.com/index/whisper/
https://platform.openai.com/docs/guides/text-to-speech/quickstart
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text-to-speech (TTS), and DALL-E for generating educational posters. Additionally, Luma AI11 was
used to create 3D ingredient models, ensuring cultural authenticity throughout the experience.

Fig. 3. Overview of the architecture for creating a personalized experience. A simplified VR environment is
shown here for illustration only. Figure 1b presents the actual environment used.

3.5 Procedure
At the recruitment stage, participants completed a pre-questionnaire to gather demographic infor-
mation, including age, gender, education level, VR experience, familiarity with the cultural content,
and preferred culinary style.
Prior to starting the experiment, participants were informed of their right to withdraw at any

time without consequence if they felt unwell. After a brief introduction, participants signed a
consent form and were provided with an overview of the experiment’s goals before proceeding.
All participants were informed that the study involved making Neapolitan pizza, but they were
not explicitly told that a Gen-AI agent was operating in the background. Additionally, they were
informed that cultural posters were available to view, though viewing them was optional and not
explicitly required.
During the experiment, participants wore a VR headset and remained standing throughout

(see Figure 1a). The experiment began with a 5-point calibration phase using the Varjo headset.
Following calibration, the investigator pressed the “Enter” button on the headset to initiate the
actual experiment and data collection. Participants were given a few moments to explore the VR
scene and familiarize themselves with the controllers.
Finally, a post-assessment was conducted. Participants were asked about their interest in the

study topic and cultural heritage activities, perception of the agent’s usability, a knowledge quiz
on pizza-making steps, and perceived realism within the VR environment. Each session took ≈ 30
minutes, including preparation, the experiment, and completion of the post-questionnaire.

3.6 Data Processing
To ensure reasonable eye-tracking quality, we removed all individuals with a tracking ratio lower
than 80% in both eyes from the sample. For the remaining sample, we identified eyemovement events
using a Velocity Identification Threshold (I-VT) adapted for VR eye-tracking analysis [27, 61]. By
exploiting gaze and head direction, we were able to calculate gaze and head velocity and determine
11https://lumalabs.ai/dream-machine, last accessed on 21 June 2024

https://lumalabs.ai/dream-machine
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events of fixation and saccades based on predefined thresholds. For the thresholds, we used previous
VR experiments with similar analysis as an orientation [18, 67]. The chosen thresholds are displayed
in Table 1.
Furthermore, the pupil diameter variables were also preprocessed. A subtractive baseline cor-

rection was performed since pupil diameter is considered idiosyncratic [66]. For a person-specific
baseline, the median of the combined pupil diameter for five seconds at the start and end of the
experiment was calculated. Further, gaze-ray casting [1, 7] was performed during the experiment,
using the gaze and head information to obtain gaze target information. We defined three different
OOI, namely the virtual avatar, the chat interface, and the posters.
For the eye-feature calculations, we ensured that all count measures were normalized by the

experiment time and that all duration measures were stated as average values per second (e.g., mean
fixation duration) or as ratios. These steps were necessary so that the duration of the experiment
did not trivially influence the eye movement values.

Table 1. Head and eye movement event identification thresholds.

Event Velocity (𝑣) Duration (Δ)

Fixation 𝑣head < 7◦/s
𝑣gaze < 30◦/s

Δfixation > 100ms
Δfixation < 700ms

Saccade 𝑣gaze > 60◦/s Δsaccade > 30ms
Δsaccade < 80ms

3.7 Measurements
In this study, we focused on eye-tracking metrics and self-reported respond to assess cognitive
load, attention, and user engagement. A pre-assessment questionnaire drawing from [33], was
used to determine each participant’s personalization pathway. This questionnaire included 5-point
Likert scale items (ranging from 1, “not a motivation,” to 5, “very strong motivation”) to classify
participants’ backgrounds in cultural heritage (e.g., “How much do the following reasons motivate
you to engage with cultural heritage activities?”). Baseline knowledge of Neapolitan pizza and
familiarity with VR were also measured. Additionally, items adapted from [45] assessed participants’
culinary style, distinguishing traditional versus innovative preferences, using a 5-point Likert scale
(e.g., “I enjoy incorporating unique or authentic food experiences into my travel.”).

For eye-tracking metrics, the study focused on indicators of cognitive load and visual attention.
Cognitive load metrics included pupil diameter, fixation duration, and fixation count. Visual atten-
tion was evaluated TTFF, saccade duration, and saccade amplitude. In eye-tracking literature, longer
fixation durations generally indicate heightened interest and deeper cognitive involvement [53, 84],
making fixation duration a valuable indicator of the learning process [46]. Saccade metrics, such as
duration and amplitude, reveal search efficiency: shorter saccades suggest efficient scanning, while
longer saccade durations and larger amplitudes indicate greater effort in locating relevant elements
and more thorough scanning [50, 56]. TTFF and saccade duration together provide insights into the
salience of learning materials, aiding in understanding improved visual search strategies [13, 30].
Additionally, pupil diameter is commonly associated with engagement and cognitive load [31, 35].
More research shows that in a working memory task, where attention allocation is required, pupil
responses might reflect differently [3].
User engagement was further measured through VR interaction data, specifically gameplay

duration, as an indicator of engagement. The VR experience was designed with consistent input
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materials across conditions, with variations only in tone of voice and adaptive responses based on
ingredient selections and questionnaire responses. Post-assessment items were adapted from [32,
42] to measure changes in attitudes, interest in cultural heritage, and perceived realism. These
items, rated on a 5-point Likert scale (e.g., “After the user study, would you be more interested
in participating in cultural heritage activities?”), included two additional items regarding the
likelihood of using similar systems for cultural exploration. The post-assessment also included
three open-ended quiz items to measure knowledge gain (e.g., “Describe the main steps involved in
making the Neapolitan pizza you created.”).

By integrating objective eye-tracking metrics with subjective questionnaire responses, this study
aims to provide a comprehensive view of how personalized AI narration in VR affects immersive
cultural heritage learning experiences.

3.8 Analysis
For each eye-tracking metric, we conducted statistical analyses to evaluate differences across
the three experimental conditions: None, Moderate, and High Personalization. Prior to selecting
the statistical tests, we assessed normality and homogeneity of variances using the Shapiro-Wilk
test [44] and Levene’s test [20], respectively. Metrics meeting both assumptions were analyzed with
one-way ANOVA to examine group differences, followed by Tukey’s HSD for post-hoc comparisons
when significant 𝑝 < 0.05. For metrics failing either assumption, we used the Kruskal-Wallis
test as a non-parametric alternative, with significant results further examined through pairwise
Mann-Whitney U tests, applying the Holm-Bonferroni correction.

4 Results
Using our user study data, in this section, we report our results measured by the following dependent
variables: Cognitive Load, Attention, and Engagement for different personalization strategies. Below,
we analyze these metrics in detail, focusing on how each personalization level (no, moderate, and
high) impacted the respective outcomes.

4.1 Cognitive Load
Cognitive load was assessed using three primary eye-tracking metrics: pupil diameter, fixation
duration, and number of fixation, each serving as an indicator of cognitive effort across the person-
alization levels.
While no statistically significant differences were found among the No, Moderate, and High

personalization conditions, as shown in Figure 4, descriptive statistics indicated slight trends. For
instance, pupil diameter tended to increase in the Moderate personalization level, with values of
(𝑀 = 0.32, 𝑆𝐷 = 0.29) for No personalization, (𝑀 = 0.28, 𝑆𝐷 = 0.31) and (𝑀 = 0.22, 𝑆𝐷 = 0.25) for
High.
Similarly, fixation duration, reflecting the time spent on points of interest, showed a minor

increase in the High personalization condition. Specifically, the mean fixation duration was (𝑀 =

0.23, 𝑆𝐷 = 0.17) in the No personalization condition, (𝑀 = 0.24, 𝑆𝐷 = 0.02) in Moderate, and
(𝑀 = 0.24, 𝑆𝐷 = 0.01) in High.

Finally, fixation count demonstrated a non-significant increase in the High personalization group,
with values of (𝑀 = 1.43, 𝑆𝐷 = 0.23) for No personalization, (𝑀 = 1.34, 𝑆𝐷 = 0.26) for Moderate,
and (𝑀 = 1.52, 𝑆𝐷 = 0.22) for High.

4.2 Visual Attention
Visual attention metrics were examined using three primary measures: time to first fixation (TTFF),
mean saccade duration, and mean saccade amplitude.
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Fig. 4. Overview of key metrics used to evaluate cognitive load among three conditions.

Figure 5a illustrates TTFF across the three conditions (No, Moderate, and High personalization).
A Kruskal-Wallis test, conducted due to non-normal data, revealed a statistically significant effect
of personalization on TTFF (𝐻 (2) = 8.73, 𝑝 = 0.013). Post-hoc pairwise Mann-Whitney U tests with
Holm-Bonferroni correction indicated significant differences between the No and High personaliza-
tion groups (𝑝 = 0.022, corrected 𝑝 = 0.045) and between the Moderate and High groups (𝑝 = 0.009,
corrected 𝑝 = 0.026). A larger effect size was observed for the Moderate vs. High comparison
(Hedges’ 𝑔 = 0.943). Descriptive statistics indicate that High personalization had the shortest mean
TTFF (𝑀 = 0.02, 𝑆𝐷 = 0.04), while the No and Moderate personalized conditions had longer times
(𝑀 = 0.12, 𝑆𝐷 = 0.16) and (𝑀 = 0.34, 𝑆𝐷 = 0.46), respectively.

Mean saccade duration, shown in Figure 5b, exhibited variation across conditions, with statisti-
cally significant differences between the No and Moderate personalized groups (𝐹 (2, 51) = 4.72,
𝑝 = 0.013, Hedges’ 𝑔 = 1.065). However, no significant differences were found between the No and
High personalized groups (𝑝 = 0.747) or between Moderate and High (𝑝 = 0.077). Descriptively,
the No personalized condition had the highest mean saccade duration (𝑀 = 0.045, 𝑆𝐷 = 0.001),
followed by High (𝑀 = 0.045, 𝑆𝐷 = 0.001) and Moderate personalization (𝑀 = 0.044, 𝑆𝐷 = 0.001).

As shown in Figure 5c, mean saccade amplitude, the distance of eye movements between fixations
revealed no significant differences across conditions. Descriptive statistics show mean saccade
amplitude was similar across conditions: No personalization (𝑀 = 9.09, 𝑆𝐷 = 0.50), Moderate
(𝑀 = 8.96, 𝑆𝐷 = 0.65), and High (𝑀 = 9.18, 𝑆𝐷 = 0.68).

4.3 Engagement
Engagement was assessed through total play duration and interest in continuing cultural heritage
activities, as depicted in Figure 6a and Figure 6b. A significant overall effect was found (𝐻 (2) = 25,
𝑝 < 0.001). Results indicate that the High personalization group had a significantly longer play
duration than the No personalization group (𝑝 < 0.0001, Holm-adjusted 𝑝 < 0.0001) and similarly,
the Moderate personalization group also had a significantly longer play duration compared to No
personalization group (𝑝 < 0.001, Holm-adjusted 𝑝 < 0.001). No significant difference was found
between the High and Moderate personalization groups (𝑝 = 0.740, Holm-adjusted 𝑝 = 0.740).
Further, significant differences were observed in participants’ interest in continuing cultural

heritage activities, such as visiting museums, participating in local workshops, or volunteering in
cultural events. The Kruskal-Wallis test revealed a statistically significant effect of condition on this
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Fig. 5. Overview of key metrics used to evaluate attention among three conditions. Significance levels are
represented as * for 𝑝 < .05, ** for 𝑝 < .01, *** for 𝑝 < .001, and **** for 𝑝 < .0001.

measure (𝐻 (2) = 6.23, 𝑝 = 0.044). Post-hoc pairwise Mann-Whitney U tests with Holm-Bonferroni
correction indicated no significant differences between the No and Moderate personalization groups
(𝑝 = 0.111, Holm-adjusted 𝑝 = 0.222, Hedges’ 𝑔 = 0.62) or between the No and High personalization
groups (𝑝 = 0.262, Holm-adjusted 𝑝 = 0.262, Hedges’ 𝑔 = −0.34). However, a significance was
observed between the Moderate and High personalization groups (𝑝 = 0.023, Holm-adjusted
𝑝 = 0.068, Hedges’ 𝑔 = −0.83), suggesting a moderate effect size. Descriptive statistics indicated
that participants in the High personalization condition reported the highest mean interest in
engaging with cultural heritage activities (𝑀 = 4.33, 𝑆𝐷 = 0.69), compared to the No (𝑀 = 4.11,
𝑆𝐷 = 0.58) and Moderate (𝑀 = 3.56, 𝑆𝐷 = 1.10) conditions.
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Fig. 6. Overview of key metrics used to assess engagement in the VR pizza-making task. Significance levels
are represented as * for 𝑝 < .05, ** for 𝑝 < .01, *** for 𝑝 < .001, and **** for 𝑝 < .0001.

4.3.1 Prediction of Gameplay Duration. To evaluate eye-tracking metrics as indicators of engage-
ment in VR learning, we performed amultiple regression analysis to assess how specific eye-tracking
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features predict gameplay duration. Table 2 presents the regression model with coefficients, stan-
dard errors, t-values, and p-values for each predictor, including mean pupil diameter, mean fixation
duration, mean saccade duration, number of fixations, and mean saccade smplitude.
The overall model was statistically significant, 𝐹 (5, 48) = 3.209, 𝑝 = 0.014, explaining approx-

imately 25% of the variance in gameplay duration (𝑅2 = 0.251). Notably, mean fixation duration
(𝑏 = 3737.29, 𝑝 = 0.007) and mean saccade duration (𝑏 = −43480.00, 𝑝 = 0.015) were significant
predictors, suggesting that longer fixations and shorter saccades are associated with extended
gameplay duration.
In contrast, mean pupil diameter, number of fixation, and mean saccade amplitude did not

significantly predict gameplay duration (𝑝 > 0.05 for each).

Table 2. Results of the multiple regression analysis with gameplay length as the dependent variable.

Model summary R-squared = 0.251
Dep. Var.: Gameplay length Adjusted R-squared = 0.172

Estimate Std. Error t-value p-value
(Intercept) 1791.22 763.84 2.345 0.023
Mean pupil diameter 97.62 71.19 1.371 0.177
Mean fixation duration 3737.29 1332.16 2.805 0.007
Mean saccade duration -43480.00 17300.00 -2.511 0.015
Number of fixation -188.47 93.51 -2.015 0.049
Mean saccade amplitude -5.79 34.68 -0.167 0.868

5 Discussion
In an era where technology increasingly demands our attention, defining balanced personalization
is essential to create meaningful, engaging experiences. This study addressed this challenge by
exploring how adaptive AI in VR can offer individualized, culturally rich learning pathways without
overwhelming users. Guided by our research questions, we discuss our findings in two main areas:
enhancing engagement through personalized narration and understanding cognitive processing
via eye-tracking metrics.

To answer RQ1, our findings indicate that personalized AI strategies are highly effective in
increasing user engagement in a VR-based cultural heritage learning setting, specifically in the
context of Neapolitan pizza-making.

As shown in Figure 6, the highest level of personalization not only boosted immediate engagement
but also promoted ongoing cultural interest, as reflected in both eye-tracking metrics and qualitative
engagement measures. Figure 6b further indicates that higher personalized narrations resonate
more deeply with users, fostering sustained interest beyond the VR experience.
The predictive relationship observed between eye-tracking metrics (e.g., fixation duration and

saccade patterns) and gameplay duration underscores that personalized narration can lead to
extended interaction times in VR. This prolonged engagement not only leverages the immersive
qualities of VR but also fosters intrinsic motivation through personalized learning pathways.
Grounded in SDT, the personalization content likely satisfies the psychological needs for relevancy,
autonomy and competence, which are essential for promoting intrinsic motivation and sustained
engagement and ultimately encouraging users to continue exploring cultural content.
To address RQ2, we examined how personalized AI narration in VR influences cognitive load

and attention through eye-tracking metrics. While no statistically significant differences were
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observed for pupil diameter, fixation duration, or fixation count, descriptive trends provided insights.
The slight increase in pupil diameter in the Moderate personalization condition suggests higher
cognitive load as users adapt to moderately tailored content, whereas its decrease in the High
personalization condition indicates smoother cognitive processing, likely due to closer alignment
with user preferences, as mentioned in research [84].

Visual attention metrics further highlight personalization’s impact. Figure 5a shows significantly
shorter TTFF in the High personalization condition, suggesting that tailored content effectively
captures attention, orienting users quickly to relevant VR elements, aligns with research like [12, 83].
Additionally, reduced saccade duration in the Moderate condition points to enhanced scanning
efficiency with personalized narration. Similar saccade amplitudes across conditions indicate that
personalization did not disrupt exploratory behavior, reflecting a balanced engagement approach.
In summary, the findings suggest that well-calibrated personalization fosters engagement and

attention while maintaining manageable cognitive load levels, enhancing both the depth and quality
of user interactions. These insights are valuable for the future development of adaptive VR learning
environments, especially in cultural heritage contexts, where balancing cognitive demands with
meaningful engagement is crucial.

5.1 Advantages and Limitations
The use of VR to simulate skill-based ICH, such as Neapolitan pizza-making, is crucial, as accessing
authentic ingredients and traditional cooking equipment is often challenging in the real world.
Additionally, traditional cuisine can be unforgiving of errors, as sourcing ingredients can be time-
consuming and costly [9]. Our study explores whether such a remote educational setup can not
only enhance learners’ understanding and engagement but also foster a lasting, meaningful, and
immersive experience. Recognizing the sensitivity of personal information revealed by eye-tracking
data, we approached this measurement with care, analyzing time-dependent changes in visual
behavior in a manner that respects privacy while providing insights into how adaptive education
shapes perception in heritage-based creative processes.
While eye-tracking offers valuable, objective measures of cognitive load and attention, it has

limitations. Eye-tracking reveals ‘where’ and ‘when’ participants focus but does not capture the
underlying reasons for their focus. Future research could incorporate retrospective reviewing
in conjunction with eye-tracking [16, 54, 73] to gain deeper insights into user perceptions of
personalized VR interactions, including aspects of learning, relevance, and enjoyment.
Moreover, the creative nature of Neapolitan pizza-making may impact eye-tracking metrics,

as participants follow step-by-step instructions while simultaneously processing guidance from
the virtual agent. This concurrent engagement might contribute to variability or ‘noise’ in certain
eye-tracking metrics, as the task requires both focused attention to procedural details and flexibility
in creative decision-making. Future iterations of this research would expand eye-tracking metrics to
better capture stages of creativity, potentially through metrics that distinguish between convergent
(focused) and divergent (creative or exploratory) attention, providing amore nuanced understanding
of cognitive engagement in personalized learning environments.

5.2 Privacy and Ethics Statement
This study received Institutional Review Board approval from the Technical University of Munich
and adhered to strict ethical standards. Eye-tracking data were anonymized, with participants
fully informed about data handling and privacy. Recognizing the sensitivity of eye-tracking data,
strict privacy safeguards were implemented, with secure storage limited to authorized personnel.
Additionally, VR personalization poses ethical considerations around fairness and potential biases.
This study aimed to enhance engagement while ensuring equitable and unbiased experiences.



14 Lau et al.

Future research should continue to address the responsible use of AI personalization in VR to
protect user rights and privacy, fostering positive educational outcomes.

6 Conclusion
This study demonstrates that personalized Generative AI in VR can meaningfully enhance sustained
engagement and attention in cultural heritage learning. By leveraging eye-tracking metrics, includ-
ing fixation duration, pupil diameter, and saccade amplitude, we show how culturally adaptive VR
experiences promote deeper engagement and attentiveness. Additionally, eye-tracking proves to be
a valuable predictor of interaction behaviors, such as gameplay duration, underscoring its utility in
real-time adaptive systems. These insights highlight the potential of VR learning environments
to dynamically adjust content to user backgrounds, effectively accommodating cognitive and at-
tentional needs. Ultimately, this approach fosters higher engagement and supports an ongoing
connection to cultural education, promoting a more continuous dialogue in the cultural space.
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