
RISCkant: A high performance, low power
heterogeneous AI computing platform

Sebastian Fritsch Simon Klier Christian Künzle

Jan-Niklas Weghorn

Artificial Intelligence Research Lab at Hardenberg Gymnasium Fürth1

October 2019

1www.hardenberg-gymnasium.de

License

RISCkant repository: https://gitlab.com/risckant

Copyright c© 2019 Sebastian Fritsch, Simon Klier, Christian Künzle and Jan-Niklas
Weghorn —also referred to as “RISCkant”

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1

Contents

Acknowledgements 4

1 Overview 5
1.1 Hardware . 5
1.2 Software . 5
1.3 Demonstrator . 6

2 Achievements 7
2.1 Efficiency . 7
2.2 Facts and figures . 8
2.3 Opening object classification to new applications 8
2.4 Performance . 9
2.5 Universality in applications . 9
2.6 Weaknesses . 9

3 Basic concepts 10
3.1 CNN . 10

3.1.1 Convolutional layer . 10
3.1.2 Pooling layer . 11
3.1.3 ReLU layer . 11
3.1.4 Fully connected layer . 11

3.2 Block matrices . 11
3.2.1 Block matrix multiplication 11
3.2.2 Block matrix addition . 11

3.3 GEMM . 12
3.3.1 Fully Connected Layers . 12
3.3.2 Convolutional Layers . 12

3.4 FPGA . 12

4 Hardware 14
4.1 Choosing a suitable FPGA . 14
4.2 Development of the GEMM Core . 14
4.3 Development in HLS tools . 15
4.4 Development in HDL tools . 15

5 Software 16
5.1 Software on the Zynq . 16
5.2 Building Linux for the Zynq . 17
5.3 Speeding up Darknet with the FPGA 17

6 Demonstrator 18
6.1 Acceleration . 18

2

6.2 Robotics . 19

7 Code snippets 21
7.1 Hardware . 21
7.2 Software . 24

8 Glossary 28

References 29

3

Acknowledgements

We would like to acknowledge our indebtedness and render our warmest thanks to
our physics teacher, Dr. Rüdiger Janner, who made this work possible by introducing
FPGAs to us. His friendly guidance and expert advice have been invaluable throughout
all stages of the work. Without our long and extensive conversations this project
would not have been possible.

We also wish to express our gratitude and utmost respect to the great administration
of our school. Without them always providing excellent working conditions this
project would not have been achievable. Their support opened many doors for us.
Thank you all so much.

The development of this paper has also benefited from comments and suggestions
made by Toni Erdenkäufer. He taught us basic concepts of programming and fostered
our dedication in computer sciences. We take this opportunity to thank him.

The persons with the greatest indirect contribution to this work are our parents, who
have taught every single of us a spirit of discovery and research. We want to thank
them, as well as the rest of our families, for their constant encouragement.

This document has been written during our senior grades at Hardenberg-Gymnasium
Fürth. We would like to thank Andreas Landgraf and Xilinx, Inc. for providing
financial and material support. Special thanks be due to Christian Ernst, the chairman
of our school’s friends association, for taking care of our research group.

Fürth, Oktober 2019

Sebastian Fritsch
Simon Klier
Christian Künzle
Jan-Niklas Weghorn

4

1 Overview

It’s hardware that makes a
machine fast. It’s software
that makes a fast machine
slow.

(Craig Bruce)

1.1 Hardware

Figure 1: PYNQ-Z2 – a FPGA board suit-
able for RISCkant

The engine of the RISCkant AI plat-
form is a Zynq-7000 SoC by Xilinx. The
Zynq-7000 SoC consists out of a dual-
core Cortex-A9 processing system and an
Artix-7 or Kintex-7 FPGA.

The FPGA enables RISCkant to offload
computationally intensive tasks which are
commonly used in neural networks like
matrix multiplication to the FPGA. This
enables us to develop high performance
fixed function hardware which runs on the
FPGA and can be used to increase the
performance of the RISCkant platform
dramatically.

1.2 Software

Figure 2: Darknet – an advanced AI
framework

The software of the RISCkant platform
is centered around the AI framework
“Darknet”2 by Joseph Redmon. It is a
high performance AI framework which is
commonly used for state-of-the-art image
recognition and classification.

The framework is written in C and there-
fore well suited for the application in low
power embedded systems like RISCkant.
It has been used for many innovations in
the computer vision space like the YOLO
image classification network.

This network is also utilized in our demon-
strators and enables them to achieve excel-
lent performance in a wide range of image
recognition tasks. Thanks to the modu-
lar and scalable architecture of Darknet it
is easy to integrate RISCkant into many
tasks that require the use of cutting-edge
neural networks.

2https://pjreddie.com/darknet/

5

1.3 Demonstrator

Figure 3: nicolAI – “Could these eyes
lie? ”

In order to demonstrate RISCkant hands-
on, we decided to build a cigarette-butt
collecting robot. This robot, which is
called “nicolAI”, is able to navigate au-
tonomously through the room and to de-
tect pieces of litter. By doing so, the
energy efficiency of RISCkant is shown in
a decent way.

6

2 Achievements

The aimless suffers his fate
— the aimful shapes it.

(Immanuel Kant)

With RISCkant we set out to develop an
AI platform that would enable new in-
novative ideas in the field of low-power
devices to be evolved. This section of
the project documentation highlights the
achievements and innovations of the RISC-
kant project and showcases its strengths
and weaknesses.

2.1 Efficiency

The efficiency of RISCkant was one of the
most important characteristics we consid-
ered during the development. This de-
cision was made because there are many
interesting applications of AI in low power
systems. It was our goal for RISCkant to
be able to detect and classify an image.

We achieved this with using under 2W.
In comparison the NVIDIA Jetson devel-
opment board has a power draw of 15W
this means that RISCkant only uses

2W

15W
≈ 13.3% (1)

of the power of the NVIDIA system.

Figure 5: The RISCkant chip – a very
complex design!

Figure 4: The power envelope of the RISCkant chip

7

2.2 Facts and figures

The hardware of RISCkant is built on a
FPGA and a generic CPU. To get most
out of the FPGA, RISCkant is designed
to be scalable. This enables us to uti-
lize almost all of the FPGA which can be
seen in figures 4 and 6. This also leads
to a very complex design. Solely for the
FPGA design over 20000 lines of synthe-
sized VHDL code were generated. The
software of the RISCkant project which
runs on the processor of the SoC envelops
over 50000 lines of code.

While being able to be used on nearly ev-
ery FPGA chip, RISCkant offers a wide
range of applications: Due to its tremen-
dously low power consumption, this frame-
work facilitates the utilization of machine
learning technologies in mobile environ-
ments.

2W

200W
= 1% (2)

Chart 7 illustrates RISCkant’s advantage
in electricity usage: By consuming only

approximately one percent of a GPU’s
power and yet processing the same rate
of frames, RISCkant overrules common
GPUs in image recognition.

100%GPU

1%

RISCkant

Figure 7: RISCkant power consumption
compared to a generic GPU

2.3 Opening object classification
to new applications

Reducing the power needed significantly,
RISCkant introduces a new era for high
performance image recognition: From now
on it is possible to use object classification
software in non-stationary, narrow-space
surroundings.

Figure 6: RISCkant’s scalability helps it getting the most performance out of the
FPGA

8

RISCkant is the key technology to develop
a whole new field of apparatuses, which
includes diminutive autonomous robots
as well as energy-efficient, driverless and
battery-driven vehicles. A specific exam-
ple is given in section 6.

2.4 Performance

In general, one can state, that a image
recognition unit equipped with RISCkant
is able to process the video stream at least
fifty, but in average a hundred times and
more faster than concurring systems while
using the same amount of energy.

This means, an application’s performance
can be increased significantly without
changing other parameters like the power
supply or the thermal budget. As a result,
RISCkant can easily be (retro-)fitted into
existing machinery.

2.5 Universality in applications

RISCkant is a technology that can be uti-
lized for various purposes. Consequently,
its use is not limited to a specific field of
technology.

2.6 Weaknesses

Whilst creating a new fundament for re-
search in artificial intelligence, some pro-
gresses in technology have to be awaited:
GPU and CPU units are mass-produced
articles. In comparison, FPGA chips are
even fabricated in large scales, but in
vastly lower quantities. This means, to
take the best advantages out of the RISC-
kant technology, major-sized FPGAs have
to become more affordable.

Another point that has to be mentioned is
the funding of RISCkant: As we developed
the whole codebase in our free time as a
hobby, we are dependent on the generous
support of our sponsors. Without them,
we would not have been able to go that
far. Nevertheless, we are wholeheartedly
convinced, that our decision to make our
software freely available for everyone was
right.

Backed by a great open source community
around the earth, we are conceited to have
spent many days and nights to help and
foster the world of image recognition.

Figure 8: RISCkant meets all timing constraints

9

3 Basic concepts

We can build a much brighter
future where humans are re-
lieved of menial work using AI
capabilities.

(Andrew Ng)

The vast field of Machine learning, espe-
cially convolutional neural networks, has
sprawled many new innovative concepts
and notions. This section provides a brief
overview over important aspects of neu-
ral networks. These are applied in many
AI platforms to provide the ability to cre-
ate, train and use neural networks. In
RISCkant these are implemented both in
hardware and in software, which results in
a tightly integrated, highly advanced and
efficient AI accelerator architecture.

3.1 CNN

CNNs are neural networks inspired by bi-
ological processes, trying to recreate the
recognition mechanism using a layered
structure. The main type of layers are

convolutional, subsampling and pooling
layers. Convolutional layers repeatedly
apply a filter to the previous layers out-
put. Subsampling layers reduce the size of
the layer by reducing multiple inputs (usu-
ally four) to one output. This reduces the
complexity of the following layers. These
operations can be performed by multiply-
ing matrices. The shape of the CNNs
input tensor usually is

(number of images)× (image width)×
×(image height)× (image depth)

(3)

3.1.1 Convolutional layer

The convolutional layers are the key part
of CNNs. The layer-input interaction
occurs as follows: The layer operates a
matrix-multiplication with a trainable ker-
nel (also called filter) and a portion of the
image. This kernel is applied on each por-
tion of the image and a smaller resulting
image matrix is created.

Figure 9: Architecture of a CNN for image classification. Image source: [6]

10

3.1.2 Pooling layer

A pooling layer is used for reducing the
size of the CNN matrix. Max pooling is
used most often. This means, that the
highest value in the area is selected and
the others fall out. It is important to
reduce the size of the CNN, so that com-
putations get less and speed increases.

3.1.3 ReLU layer

ReLU stands for Rectified Linear Unit and
describes a function as follows:

f(x) = max(0, x) (4)

This gets applied on every value in the
layer.

3.1.4 Fully connected layer

A fully connected Layer is used in the
last step of the CNN in order to return a
precise result. All neurons get connected
together.

3.2 Block matrices

A matrix can be partitioned into smaller
sub matrices or block matrices.

M =

⎡
⎢⎢⎢⎣
M11 M12 · · · M1n

M21 M22 · · · M2n

d
...

...
. . .

...
Mm1 Mm2 · · · Mmn

⎤
⎥⎥⎥⎦ (5)

The RISCkant hardware platform uses matri-
ces 64× 64 in size.

3.2.1 Block matrix multiplication

A, B and C shall be block matrices. In this
example they are 2× 2 matrices. The prod-
uct

C = AB (6)

can be defined using the partitioned matri-
ces.

C =

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
= (7)

[
A11B11+A12B21 A11B12+A12B22

A21B11+A22B21 A21B12+A22B22

]
(8)

This can of course be extended to larger ma-
trices with more block matrices.

3.2.2 Block matrix addition

A, B and C shall be block matrices. In this
example they are 2× 2 matrices. The sum

C = A+B (9)

can be defined using the partitioned matri-
ces.

11

C =

[
A11 A12

A21 A22

]
+

[
B11 B12

B21 B22

]
(10)

=

[
A11 +B11 A12 +B12

A21 +B21 A22 +B22

]
(11)

3.3 GEMM

GEMM, or GEneral Matrix Multiplication,
describes a mathematical operation which
multiplies two input matrices A and B to
get an output matrix C.

C = αAB + βC (12)

where α is one and C is an all-zeros matrix.
This Operation is especially important in ap-
plications such as 3D Graphics, Fully Con-
nected Layers or Convolutional Layers. Be-
cause of the heavy utilization of this operation
and the great magnitude of the input matrices,
the GEMM algorithm is often implemented
recursively by subverting A and B into block
matrices.

3.3.1 Fully Connected Layers

In a Fully Connected Layer each value in the
input layer is multiplied with the correspond-
ing weight and sums the results. Given k
input values and n neurons, with a predefined
set of weights for the input layer, there are n
output values, for each neuron. This is cal-
culated using the dot product of the input
values and the weights.

3.3.2 Convolutional Layers

In contrast to the Fully Connected Layer, the
convolutional operation produces its output
by applying a number of kernels across the
input. A Convolutional Layer has a two di-
mensional image as input with an arbitrary
number of channels for each pixel. Each ker-
nel is another three-dimensional array of in-
tegers, with the depth being the same as the
input image, but with a much smaller width
and height. To produce a result, the kernel
is applied to a grid across the input image.
Each result of the multiplication of the input
value and the weights at a specific point are
summed and constitute the output for this
point. When implementing this functional-
ity on a computer the 3D image first must
be converted into a 2D array, that can be
treated like a matrix. This is accomplished
by patching the 3D matrix and serializing it
using an operation called img2col. Now, do-
ing the same with the kernel matrix, results
in a second matrix for multiplication, which
then, can be used for matrix multiplication
using GEMM.

Because of the redundancy and specialization
of this operation it can easily be implemented
in the Hardware. Those GEMM cores com-
plete functional units, which are the foun-
dation of RISCkant’s scalability. Increasing
the size of the board, one can easily place
more GEMM cores on the chip design further
increasing performance.

3.4 FPGA

FPGAs are programmable matrices of logic
blocks. Theoretically every logical circuit can
be programmed on a FPGA (even processors,
etc.). In reality often the size of the FPGA
is a limiting factor in implementing highly
complex circuits. RISCkant uses a FPGA to

12

implement General Matrix Multiplication in
hardware. This allows the operation to be
performed in a much faster way than on a
processor or a comparable GPU, whilst reduc-
ing the power consumption. Applications of
FPGAs are in aerospace and defense, ASIC
Prototyping, video & image processing and
many more [5].

13

4 Hardware

Computers themselves, and soft-
ware yet to be developed, will
revolutionize the way we learn.

(Steve Jobs)

The previous sections of this documentation
were dedicated to explaining the basic con-
cepts and ideas behind RISCkant. In contrast,
this section in going to focus on the concrete
development and implementation of RISC-
kant. RISCkant is based on the fundamental
idea of distributing the computation load onto
two different types of processors: On the one
hand a generic CPU and, on the other hand a
highly specialized FPGA chip. According to
this, FPGA evaluation boards are tailor-made
for development on the RISCkant platform.
Meaning that the image classification is done
heterogeneously, it is possible to execute gen-
eral tasks on the CPU, which is backed by
RISCkant’s GEMM core calculating matrix
multiplications.

4.1 Choosing a suitable FPGA

Due to the heterogeneous nature of RISCkant
we needed a microprocessor and a FPGA as

the hardware platform of RISCkant. After
some research and help by a expert from Xil-
inx we decided to use a Xilinx Zynq-7000
SoC. This SoC combines a CPU and a FPGA
in one package and provides a fast intercon-
nect between them. In addition there are a
lot of documentation and tools provided by
Xilinx.

4.2 Development of the GEMM
Core

After choosing a hardware platform we
wanted to start to design our GEMM core.
Xilinx provides traditional design tools in
which we could design our chip with VHDL
and also high level synthesis (HLS) tools.
These tools can convert design written in a
subset of C to be converted into a hardware
description language (HDL) such as VHDL
or Verilog, albeit the resulting design is at
lower speed and efficiency. We decided to use
the HLS tools instead of the HDL tools as it
would allow for faster iteration times which
was very important to us as there were many
variables in our design such as block matrix
size which we needed to optimize.

Figure 10: Block design of our hardware

14

4.3 Development in HLS tools

These tools made implementing the core logic
which multiplies matrices quite easy as we
just needed to implement them in C (code
snippet 1). After this was finished we needed
to connect the matrix multiplier to the ARM
CPU which is part of the Zynq SoC. This
proved to be quite a challenge both in hard-
ware and in software. In the end we came
up with the block design seen in Figure 10.
The data can be sent from a DMA buffer in
the CPU over AXI to a AXI DMA controller.
This DMA controller then exposes a transmit
and receive AXI Stream interface. These are
then used to connect to the GEMM accelera-
tor. We added a receive and transmit state
to our GEMM core as can be seen in Figure
12 and code snippet 2. In the code snippet
you can see that firstly we receive three ma-
trices from the input stream, then compute
the multiplication and then transmit them
over the output stream. Then we finished the
block design by setting up and connecting the
clocks, reset signals and interrupts.

Figure 12: State diagram of our GEMM
core

4.4 Development in HDL tools

Originally we planned on replacing the HLS
code with HDL code after the prototyping
phase of the project because it usually per-
forms better. However after we reevaluated
our plans after we got the prototype to work
faster then we planned in our project plan we
decided that optimising our HLS code and
the software would have greater benefits than
working on a HDL accelerator because the
HLS was surprisingly effective and efficient.
In addition one of the main bottlenecks in the
design is the interface between the FPGA and
the CPU. A HDL accelerator could in no way
speed this up. In conclusion we decided on
sticking with our accelerator and optimised
it instead of rewriting it.

Figure 11: RISCkant meets all timing constraints

15

5 Software

I was lucky to be involved and
get to contribute to something
that was important, which is em-
powering people with software.

(Bill Gates)

RISCkant emerges out of “Darknet”, an open-
source framework written in C and CUDA for
the usage in Computer Vision and Artificial
Intelligence. In Darknet one uses YOLOv3
(standing for “You only look once”) as a “state-
of-the-art, real-time detection system” [3].
Figure 13 shows a comparison of different

Figure 13: YOLOv3 in comparison to
other detectors Image source:
[2]

detector systems. The x-axis indicates the
time needed for classification of an image and
the y-axis indicates the performance scored
with a picture of the COCO dataset. The per-
formance is measured with the mean Average
Precision (mAP). The reason why RetinaNet
and YOLOv3 are lines in the diagram, while
other detectors are only single points is the
scalability of YOLOv3 and RetinaNet. One
can easily change the size of the model and
with YOLOv3 there isn’t even any retraining
needed! [4]

The main difference between orthodox im-
age detectors and YOLO is their different
approach on the image. Whilst conventional

detectors apply their model on different sec-
tions on the pictures and try to detect objects
by this, YOLO applies on model on the whole
image at once. The networks divides the im-
age into section by itself and predicts bound-
ing boxes and probabilities. As a result of this,
the number of required calculations decreases
and speed increases tremendously.

One can either use a pre-trained model,
or train one by itself. We are going to
demonstrate both options with our demon-
strators.

In order to accelerate Darknet, one has to
find out, which operation is time-consuming
and required to be accelerated. For this we
modified the gemm() function in the gemm.c
file as seen in listing ??. An experimental run
on a notebook returned a total execution time
of 22.382 seconds and a GEMM-execution
time of 21.78 seconds.

21.781 006 s

22.382 10 s
≈ 97.314% (13)

Concluding we have to speed up the GEMM-
operation. We achieved this by leveraging the
RISCkant hardware.

5.1 Software on the Zynq

There are two methods of running software
on the Zynq SoC. On the one hand it is pos-
sible to write bare metal code for the ARM
CPU which allows very low level access to the
SoC and therefore makes it very easy to use
the GEMM accelerator. On the other hand
it is possible to use Linux which has many
advanced features but requires a lot of work
to set up and it is necessary to write your
own kernel driver to access the FPGA.

We decided on using Linux as we needed fea-
tures like networking or the file system. Fur-
thermore this made porting software to the

16

Zynq quite easy, however getting it to work
was quite a lot of work. In addition the pro-
cesses of setting up Linux was sparsely docu-
mented but we managed to figure it out by a
lot of researching.

5.2 Building Linux for the Zynq

Luckily for us Xilinx already provides tools to
build Linux which are called “Petalinux”. Af-
ter installing Petalinux which required some
patching to get it to work building Linux was
quite easy. However being able to access the
FPGA from Linux was not.

After a lot of research we figured out how it
we could implement it. Firstly we needed to
adjust Linux Device Tree. The Device Tree is
a object that tells the Linux Kernel at what
physical addresses it can find the FPGA (to
be exact: the AXI port of the FPGA). The
Petalinux tools should be able to configure it
automatically but for us they were configured
wrongly so we fixed it.

Secondly we needed a Linux Kernel Driver
which could interface to our accelerator. This
is needed because only the Linux Kernel can
access physical memory, the driver therefore
needs to map the physical addresses of our
accelerator in to virtual user address space.
Writing a Kernel Driver is quite complicated
but there were existing drivers we could adapt
and a presentation by Xilinx which explained
some concepts.

5.3 Speeding up Darknet with the
FPGA

Because we are using Linux it was quite easy
to port Darknet to the Zynq. Now with only
using the CPU we can observe Darknet tak-
ing 225 seconds to classify and detect one
image. To integrate the FPGA we firstly
need to be able to upload the matrices to

the FPGA, start the computing and after it
has completed download the result. Listing
4 shows how we achieved this. This makes it
possible to quickly calculate the multiplica-
tion of 64× 64 (the size of the GEMM core)
matrices.

To make it possible to multiply arbitrary sized
matrices we use block matrices. As the rest of
Darknet uses regular matrices we needed to
write a function that creates block matrices
and one that would delete them (Listing 5 and
6). With this we could integrate GEMM into
Darknet (Listing 7). With this Darknet now
only takes 15 seconds to process one image.
This represents a speed-up of 1500%.

225 s

15 s
= 1500% (14)

17

6 Demonstrator

Genius is one percent inspiration,
ninety-nine percent perspiration.

(Thomas Alva Edison)

Our project got two stages of demonstra-
tion:

1. Demonstration of the acceleration

2. Practical use in robotics

6.1 Acceleration

The strength of acceleration highly depends
on the board used, and which processor we ref-
erence to. For instance a by comparison cheap
board like the ZYNQ XC7Z020-1CLG400C3

has a 650MHz dual-core Cortex-A9 processor
and the calculation time of darknet is: 230.34s.
Meanwhile an Intel Silver N5000 Processor
(quad-core, 2.7GHz) takes a calculation time
of about 2.76 seconds.

Same approach applies for the FPGA. A
by comparison cheap FPGA like the Artix-7
FPGA in a Zynq-7000 environment takes a

3https://www.xilinx.com/support/
documentation/data_sheets/
ds187-XC7Z010-XC7Z020-Data-Sheet.
pdf

Figure 14: object-orientated and semi-functional structure diagram of nicolAI

18

calculation time of about 7.9 s. Meanwhile a
more expensive and high-end board like the
“Xilinx Zynq UltraScale+ MPSoC ZCU104
Evaluation Kit” with a Zynq-UltraScale+ en-
vironment takes a calculation time of about
1.6 s.

So it isn’t possible to give absolute numbers,
but in general we can say that RISCkant pro-
vides an acceleration factor of 30-50x, whilst
reducing the power consumption by 3x.

Some may ask: “Why do you compare your ac-
celerator to CPUs instead of GPUs, which are
more efficient in the field of AI?”. The answer
is that the are nearly no low-power GPUs (ex-
cept of smartphone GPUs – but those aren’t
suitable for AI) available for constrained envi-
ronments. In contrast there are many RISC-
CPUs like ARM-Cortex etc., which are used
on evaluation boards and are suitable for a
benchmark comparison.

6.2 Robotics

To provide an appropriate showcase experi-
ence, we decided to modify a robot vacuum
cleaner. Specifically we used the “Vileda VR
101”4, a cheap but sufficient model for our
project. This decision has proven to work
well, because we have not had to build a un-
dercarriage nor a cleaning mechanism, since
it also wouldn’t have been expedient with
regard to the project. The result of this
process is called nicolAI, which is short for
neural interactive convolutional open-source
low-energy Artificial Intelligence experience.
Figure 14 shows the structure of our robot.
There are three main processing compo-
nents:

4https://www.vileda.com/media/
wysiwyg/VR101_Manual_Pt-1_INT_
230616.pdf

Figure 15: Flowchart of the robot

19

1. the FPGA, an Xilinx Artix-7

2. the on-board Zynq-processor, a dual-
core Cortex A

3. the Raspberry Pi, for object-tracking
and main coordination

Basic information about FPGAs may be
found under subsection 3.4. Artix-7 FPGA
are characterized through a high performance-
per-watt ratio and “are best value for a vari-
ety of cost and power-sensitive applications
including software-defined radio, machine vi-
sion cameras, and low-end wireless backhaul.”
[1]

Figure 16: block-diagram of a Zynq-7000
SoC [7]

Zynq is a SoC-family developed by Xilinx in
behalf of the combination of powerful ARM-
based processors and the hardware opportu-
nities given by a FPGA. Our project uses
a Zynq XC7Z020-1CLG400C, a member of
the Zynq 7000 family. Zynq-7000 devices are
equipped with dual-core ARM Cortex-A9 pro-
cessors integrated with 28 nm Artix-7 based
programmable logic for maximum design flex-

ibility.

The Raspberry Pi is a single-board general-
purpose computer. He is energy-efficient and
suitable for a energy-constrained environment.
We use the Raspberry Pi for object-tracking,
motor control, camera pre-processing and
task-coordination.

Further components are the camera, the
motor-driver, etc. As a camera, we use a Log-
itech C270 HD-Webcam5. The motor driver
is a L298n dual full-bridge driver6. Further-
more the vacuum cleaner itself is connected
to the Raspberry Pi over a relay, because
the power of the Pi’s GPIO pins wouldn’t be
sufficient in power.

The program flow of our robot, is displayed in
Figure 15. The special feature of our imple-
mentation is the symbiosis of Artificial Intelli-
gence and Object Tracking. The AI calculates
the initialisation coordinates of our object and
the object tracker moves the robot in order to
drive to the object. This saves a lot of calcula-
tion time, because no real-time AI is needed.
The AI is used for tracker verification and
initialisation. By this, the robot is able to op-
erate in real-time, although being restricted
through its power- and space-constrained en-
vironment.

The program flow is implemented in Python
using a Raspberry Pi. The code for this can
be found in our GitLab repository nicolAI7.
The program flow itself can be found in the file
tracker.py. The other files are tests, emu-
lations or self-written modules and libraries.
More information on each file can be found
in the header or in the repo README.

5https://www.logitech.com/de-de/
product/hd-webcam-c270

6https://www.sparkfun.com/
datasheets/Robotics/L298_H_Bridge.
pdf

7https://gitlab.com/risckant/
nicolai

20

7 Code snippets

Programming is the art of algorithm design and the craft of debugging errant
code.

(Ellen Ullman)

7.1 Hardware

1 // implements matrix multiplication in hardware
2 void mmult_hw(float a[DIM][DIM], float b[DIM][DIM], float C[DIM][DIM],

float out[DIM][DIM])
3 {
4 // can be adjusted for better performance but needs more space on the

FPGA; this should be ideal for a Zynq-Z7020
5 int const FACTOR = DIM/4;
6 #pragma HLS INLINE
7 #pragma HLS array_partition variable=a block factor=FACTOR dim=2
8 #pragma HLS array_partition variable=b block factor=FACTOR dim=1
9

10 // computing A * B + C
11 L1:for (int ia = 0; ia < DIM; ++ia)
12 {
13 L2:for (int ib = 0; ib < DIM; ++ib)
14 {
15 #pragma HLS PIPELINE II=1
16 T sum = C[ia][ib];
17 L3:for (int id = 0; id < DIM; ++id)
18 sum += a[ia][id] * b[id][ib];
19 out[ia][ib] = sum;
20 }
21 }
22 return;
23 }

Listing 1: Matrix multiplication in hardware

1 // pop float from axi stream
2 float pop_stream(ap_axiu <AXI_SIZE,U,TI,TD> const &e)
3 {
4 #pragma HLS INLINE
5

6 // convert from AXI float
7 union
8 {
9 unsigned int ival;

10 float oval;
11 } converter;

21

12 converter.ival = e.data;
13 float ret = converter.oval;
14

15 // receive axi vals
16 volatile ap_uint<sizeof(T)> strb = e.strb;
17 volatile ap_uint<sizeof(T)> keep = e.keep;
18 volatile ap_uint<U> user = e.user;
19 volatile ap_uint<1> last = e.last;
20 volatile ap_uint<TI> id = e.id;
21 volatile ap_uint<TD> dest = e.dest;
22

23 return ret;
24 }
25

26 ap_axiu<AXI_SIZE,U,TI,TD> push_stream(float const &v1, bool last = false)
27 {
28 #pragma HLS INLINE
29 ap_axiu<AXI_SIZE,U,TI,TD> e;
30

31 // convert from float to AXI
32 union
33 {
34 float ival;
35 unsigned int oval;
36 } converter;
37 converter.ival = v1;
38 e.data = converter.oval;
39

40 // set axi stream vals, this is needed for receiving from an AXI
Stream

41 e.strb = -1;
42 e.keep = 15;
43 e.user = 0;
44 e.last = last ? 1 : 0;
45 e.id = 0;
46 e.dest = 0;
47 return e;
48 }
49

50 void axi_mmult_hw (
51 AXI_VAL in_stream[3*SIZE],
52 AXI_VAL out_stream[SIZE])
53 {
54

55 #pragma HLS INLINE
56

57 float a[DIM][DIM];
58 float b[DIM][DIM];
59 float c[DIM][DIM];
60 float out[DIM][DIM];
61

62 // stream in first matrix
63 for(int i = 0; i < DIM; i++)
64 {

22

65 for(int j = 0; j < DIM; j++)
66 {
67 #pragma HLS PIPELINE II=1
68 int k = i * DIM + j;
69 a[i][j] = pop_stream(in_stream[k]);
70 }
71 }
72

73 // stream in second matrix
74 for(int i = 0; i < DIM; i++)
75 {
76 for(int j = 0; j < DIM; j++)
77 {
78 #pragma HLS PIPELINE II=1
79 int k = i * DIM + j + SIZE;
80 b[i][j] = pop_stream(in_stream[k]);
81 }
82 }
83

84 // stream in third matrix
85 for(int i = 0; i < DIM; i++)
86 {
87 for(int j = 0; j < DIM; j++)
88 {
89 #pragma HLS PIPELINE II=1
90 int k = i * DIM + j + 2 * SIZE;
91 c[i][j] = pop_stream(in_stream[k]);
92 }
93 }
94

95 // do HW multiplication
96 mmult_hw(a, b, c, out);
97

98 // stream out result matrix
99 for(int i = 0; i < DIM; i++)

100 {
101 for(int j = 0; j < DIM; j++)
102 {
103 #pragma HLS PIPELINE II=1
104 int k = i * DIM + j;
105 out_stream[k] = push_stream(out[i][j], k == (SIZE-1));
106 }
107 }
108

109 return;
110 }

Listing 2: Recieving and transmitting matrices from AXI Stream

23

7.2 Software

1 #include <time.h>
2 float total_seconds = 0;
3 void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
4 float *A, int lda,
5 float *B, int ldb,
6 float BETA,
7 float *C, int ldc)
8 {
9 clock_t t;

10 t = clock();
11 gemm_cpu(TA, TB, M, N, K, ALPHA, A, lda, B, ldb, BETA, C, ldc);
12 t = clock() - t;
13 double time_taken = ((double)t)/CLOCKS_PER_SEC; // in seconds
14 total_seconds += time_taken; // add to total time;
15 printf("gemm() took %f seconds to execute\n", time_taken);
16 printf("the total time ist %f seconds\n, total_seconds);
17 }

Listing 3: Testing matrix multiplication in darknet

1 void gemm_hw(float* A, float* B, float* C)
2 {
3 // start the accelerator
4 XHls_accel_Start(&accel);
5

6 // copy matrix to dma buffers
7 memcpy(a, A, BLOCK_SIZE);
8 memcpy(b, B, BLOCK_SIZE);
9 memcpy(c, C, BLOCK_SIZE);

10

11 // get tx and rx channels
12 int tx_chan = axidma_get_dma_tx(dma_dev)->data[0];
13 int rx_chan = axidma_get_dma_rx(dma_dev)->data[0];
14

15 // transfer matrices to FPGA
16 axidma_oneway_transfer(dma_dev, tx_chan, (void*)a, BLOCK_SIZE,true);
17 axidma_oneway_transfer(dma_dev, tx_chan, (void*)b, BLOCK_SIZE,true);
18 axidma_oneway_transfer(dma_dev, tx_chan, (void*)c, BLOCK_SIZE,true);
19

20 // recieve result from FPGA
21 axidma_oneway_transfer(dma_dev, rx_chan, (void*)out, BLOCK_SIZE,true)

;
22

23 // copy from dma buffer to output

24

24 memcpy(C, out, BLOCK_SIZE);
25 }

Listing 4: Running matrix multiplication on the hardware

1 float** create_block_matrix(int M, int N, float* A)
2 {
3 // row and column count of block matrix
4 int rows = ceil((float)M / BLOCK);
5 int cols = ceil((float)N / BLOCK);
6

7 // allocate block matrix
8 float** A_part = malloc(rows * cols * sizeof(float*));
9

10 // iterate over block matrix
11 for (int i = 0; i < rows * cols; i++)
12 {
13 // allocate individual matrices
14 A_part[i] = malloc(BLOCK_SIZE);
15 float* part = A_part[i];
16

17 // calculate current row and column
18 int col = i % cols;
19 int row = i / cols;
20

21 // iterate over current matrix
22 for (int j = 0; j < BLOCK; j++)
23 {
24 for (int k = 0; k < BLOCK; k++)
25 {
26 // if outside of original matrix: pad with 0
27 if (col * BLOCK + k >= N || row * BLOCK + j >= M)
28 {
29 part[j * BLOCK + k] = 0.0f;
30 }
31 else // if inside: extract value from original matrix and

put into the block
32 {
33 part[j * BLOCK + k] = A[col * BLOCK + k + (row *

BLOCK + j) * N];
34 }
35 }
36 }
37 }
38

39 return A_part;

25

40 }

Listing 5: Creating a block matrix from a matrix

1 void release_block_matrix(int M, int N, float** A)
2 {
3 // calculate number of blocks in matrix
4 int num_blocks = ceil((float)M / BLOCK) * ceil((float)N / BLOCK);
5 for (int i = 0; i < num_blocks; i++)
6 {
7 // free block
8 free(A[i]);
9 }

10 // free matrix
11 free(A);
12 }

Listing 6: Deleting a block matrix

1 void gemm_block(int M, int N, int K, float** A, float** B, float** C)
2 {
3 // calculate size of individual matrices
4 int lm = (int)ceil((float)M / BLOCK);
5 int ln = (int)ceil((float)N / BLOCK);
6 int lk = (int)ceil((float)K / BLOCK);
7

8 for (int i = 0; i < lm; ++i)
9 {

10 for (int j = 0; j < ln; ++j)
11 {
12 for (int k = 0; k < lk; ++k)
13 {
14 // calculate indices
15 int a = i * lk + k;
16 int b = k * ln + j;
17 int c = i * ln + j;
18

19 // multiply the matrices
20 gemm_hw(A[a], B[b], C[c]);
21 }
22 }

26

23 }
24 }

Listing 7: Multiplying block matrices

27

8 Glossary

AI artificial intelligence

ARM advanced RISC machines

ASIC application-specific integrated circuits

AXI advanced extensible interface

CNN convolutional neural network

CPU central processing unit

CV computer vision

DMA direct memory access

FPGA field-programmable gate array

GEMM general matrix multiplication

GPU graphics processing unit

SoC System on Chip

UAV unmanned aerial vehicle

UGV unmanned ground vehicle

VHDL very high speed integrated circuit hardware description language

OOTL human out of the loop control

HRI human-robot interaction

HDL hardware description language

HLS high level synthesis

YOLO you only look once

nicolAI neural interactive convolutional open-source low-energy Artificial Intelligence

28

References

[1] Artix-7 FPGA Family. url: https://www.xilinx.com/products/
silicon-devices/fpga/artix-7.html.

[2] Joseph Redmon. Comparison to other detectors. 2018. url: https : / /
pjreddie.com/darknet/yolo/.

[3] Joseph Chet Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2017.

[4] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In:
CoRR abs/1804.02767 (2018). arXiv: 1804.02767. url: http://arxiv.
org/abs/1804.02767.

[5] Juan José Rodríguez-Andina, María Valdés, and María Jesus Moure. “Advanced
Features and Industrial Applications of FPGAs - A Review”. In: IEEE Trans-
actions on Industrial Informatics 11 (Aug. 2015). doi: 10.1109/TII.2015.
2431223.

[6] Typical CNN architecture. 2015. url: https://www.ziiai.com/blog/619.

[7] zynq-mp-core-dual. 2017. url: https://www.xilinx.com/content/dam/
xilinx/imgs/block-diagrams/zynq-mp-core-dual.png.

29

