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ABSTRACT
Novice programmers seem to learn basic programming skills amaz-
ingly fast by using visual programming environments like Scratch
or Snap. Yet at a second glance, in many cases, the students’ pro-
gramming projects make use of pre-learned solution patterns like
collision detection. Aiming to investigate how far such pre-learned
patterns are used and adapted, we have to analyze the program
structure of a substantially large number of Scratch projects, e.g.
from the Scratch repository, in a very detailed way. To automate
the static code analysis of these projects, we developed a scheme to
transform Scratch projects into a common graph format (TGraph),
which was used up to now to analyze programs in Java and Haskell
as well as UML diagrams and mathematical solutions. In a sec-
ond step, this representation enabled us to apply a SQL-like query
language for graphs (GReQL) to detect programming patterns in
students’ Scratch projects. This paper describes the design of our
TGraph scheme for Scratch as well as how to query patterns in
Scratch code using GReQL, in order to stimulate the use of this
methodology by other researchers. As a feasibility study, we re-
port its application on the outcomes of one of our Scratch courses
attended by 143 children aged 8-12 years. The study showed that
with the presented methodology any code structure can be detected
in Scratch projects. To check the validity of the methodology, the
programs were additionally checked manually for the occurrence
of two patterns - the results were consistent.

CCS CONCEPTS
• Social and professional topics → K-12 education; • Software
and its engineering → Patterns; Software verification and valida-
tion.
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1 INTRODUCTION
The discussion about the necessity of computer science (CS) and
especially programming in primary education has grown steadily
in recent years [4][34]. At the same time, visual programming
environments for educational purposes like Scratch, Snap or Blockly
have become very popular for teaching introductory programming.
One reason for this may be that no knowledge of programming
syntax is required, and no compile-time errors can occur [33]. Thus,
the students do not receive frustrating error messages. On the other
hand, environments such as Scratch are intentionally designed to
facilitate engagement among students by supporting many types of
projects and making it easy to personalize them [24]. Research even
shows that Scratch can improve learning outcomes in disciplines
outside CS [21].

During their first steps in programming, students are frequently
exposed to existing code fragments that they try to understand
or to adapt [5][25][32]. In consequence, when it comes to solving
more complex problems, some students may tend to apply or adapt
previously learned solution patterns, while others could try to
construct their own individual solution from scratch. For example,
Smith et al. [27] report that children in Code Club had difficulties
in making the transition from following guided instructions in
Scratch to applying knowledge to unguided open-ended tasks. To
investigate how far and under which circumstances students tend to
use predefined solutions, we aim to examine the program structure
of a substantially large number of Scratch projects.

Besides the investigation of solution patterns on a large scale,
we’re aiming to analyze Scratch code online in an introductory
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MOOC on object-oriented programming [18][19] to provide en-
riched automated feedback to students. In this MOOC we already
use the e-assessment system JACK [13] to analyze Java code.

Our general research question is to what extent and in what form
novice programmers reuse solution patterns to solve problems in
different contexts using visual programming languages. For this
purpose, we have to analyze larger numbers of student projects, e.g.
taken from the Scratch repository or provided by MOOCs. To en-
able such large scale investigations, we need to apply an automated
code analysis. The basic idea for this analysis is to detect program-
ming (solution) patterns by searching for certain corresponding
combinations of instructions and control structures in the code of
the students’ programming projects.

To perform this automated code analysis, we have adopted a
set of tools that have been developed for the analysis of programs
written in textual languages like Java. First, we need to represent
the program structure in a way that is easily accessible to automated
analysis. For this purpose we have created a method to transform
Scratch projects into the TGraph format[9]. Second, we need a
query language that operates on this representation. As it was
already used to search on TGraphs, it seemed obvious to choose
GReQL for this purpose, see [16]. Finally, a management system has
to combine these tools and to provide user access. As the automated
assessment system JACK was already using TGraphs and GReQL,
it seemed natural to use it for our purpose.

In the following, we outline our methodology to find solution
patterns in programming projects. In addition, we present a feasi-
bility study that validates the methodology and demonstrates some
exemplary application cases. We address the following research
questions:

• How can the existing methodology for analyzing textual
programming languages be adapted to Scratch?

• To what extent are TGraphs suitable for finding patterns in
Scratch projects?

2 THEORETICAL BACKGROUND AND
RELATEDWORK

2.1 Learning Progress and Visual
Programming Languages

Various visual programming languages - especially those developed
for the educational context - are widely known for encouraging
engagement, creativity and tinkering among novice programmers
[37]. At the same time, research is increasingly focusing on the
question of which CS concepts students learn in these environments
and what their learning progress looks like.

Meerbaum-Salant et al. [20] investigatewhether the use of Scratch
in extracurricular activities with secondary school students can fa-
cilitate the general learning of CS concepts (e.g. initialization, loops,
variables). They discovered that students can learn CS concepts by
programming with Scratch and that some concepts were learned
more successfully than others.

To assess the CS concepts learned during a two-week summer
camp, Franklin et al. [11] developed a technique to analyze the
students’ programming results as well as information from the
supporting staff. At the end of the camp, students demonstrated

competencies in event-driven programming, initialization of state,
message passing and say/sound synchronization.

Related research also focuses on the difference in learning be-
tween visual and textual programming and whether it is easier
for students to learn textual programming if they first program in
a visual programming environment. Armoni et al. [2] found that
students who had been introduced to CS concepts in middle-school
with Scratch had a better understanding of these concepts when
they later programmed with Java or C#. Weintrop and Wilensky
[35] developed a commutative assessment to find out how learn-
ing block-based programming differs in conceptual understanding
compared to learning text-based programming languages. They
asked 90 high-school students questions about short programs –
half in text form, the other half in block-based form. Their analy-
sis revealed differences in the performance and in misconceptions
based on the programming modality.

Grover at al. [15] designed and tested a seven-week introductory
CS course for middle school, called "Foundations for Advancing
Computational Thinking" (FACT). The course was conducted in
several classroom settings as well as a MOOC. Their assessment
of the courses showed significant learning gains in algorithmic
thinking and changes in the students’ perception of computing.
They also found an increase in the students’ ability to transfer their
learning from Scratch to text-based programming languages. As an
extension of their studies, they measured students understanding
in introductory CS, identifying misconceptions and challenges in
the use of variables as well as the way loops and boolean operator
work [14].

In their study, Techapalokul and Eli Tilevich [31] analyzed over
600K projects from the Scratch repository for so-called code smells
- recurring patterns and implementations that indicate software
quality issues. They found several code smells (e.g. duplicate code,
long script, unused variable) that reduce the likelihood of Scratch
projects being remixed.

2.2 Solution Patterns
Design patterns are a very important part of software engineering,
providing a common vocabulary describing a general solution for
a shared problem. For object-oriented programming Gamma et al.
[12] presented a catalog of design-patterns that has been widely
expanded over the past. Design patterns as a recipe for solving
a common programming problem are also considered helpful for
programming beginners [7].

To identify patterns that occur in student programs, Amanullah
and Bell [1] analyzed 212,250 projects from the Scratch repository.
They proposed the use of "elementary patterns" that are intended
to impart good programming habits and to teach problem-solving
independently from a specific programming language. These pat-
terns can be divided into loop patterns and selection patterns. Loop
patterns include solution patterns like process all items of a collec-
tion, linear search to stop a loop when a condition is met or polling
loop to iterate a sequence until a user-entered value is reached.
Selection patterns contain whether or not for a single if statement,
if-else statements are called alternative action pattern, the indepen-
dent choice pattern solves problems related to nested loops. Other
research put its focus on mapping solution patterns to aspects of
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computational thinking (CT) [36]. Seiter and Foreman [26] intro-
duced the Progression of Early Computational Thinking (PECT)
model to measure computational thinking by the level of skills uti-
lized in coding design patterns. As a part of their assessment, they
introduce "Design Pattern Variables" as a set of contextual proficien-
cies based on coding patterns in Scratch such as animate looks or
motion, conversate, collide, maintain score and user interaction. The
proficiency level of these patterns is then assessed by a qualitative
scale: basic, developing and proficient. For example, in the pattern
animate motion, a simple change of location is considered basic,
initializing and changing the position of a sprite is developing while
the use of relative movement is considered proficient.

Koh et al. [17] describe a semantic analysis called "Program Be-
havior Similarity (PBS)" to analyze CT patterns in games created
with the visual programming environment AgentSheets. PBS deter-
mines the similarity of games by calculating the behavioral simi-
larity on a set of rules by which the game is programmed. For this
purpose, they propose the Computational Thinking Pattern Graph
(CTPG), which identifies nine canonical patterns that are used in
games e.g. cursor control, collision, hill climbing. They designed a
quiz to test if students are able to recognize these abstract CT pat-
terns in other contexts such as science simulations. For example,
the students were shown a video of two people sledding downhill
and then asked about the connection to the game "Frogger", which
was implemented with the patterns transport and collision [3].

2.3 Automated Analysis of Scratch Programs
For investigations of Scratch programs on a large scale such as the
Scratch repository or to provide automated feedback to learners,
various tools for automated code analysis of Scratch projects have
been developed. Boe et al. [6] present Hairball, a basic static code
analysis tool, that automatically analyzes Scratch 2 projects. It pro-
vides a plugin architecture that allows extending the functionality
of Hairball. In a case study, they developed plugins to detect code
patterns for initialization, say and sound synchronization, broad-
cast/receive and complex animation. Dr. Scratch [22] builds upon
Hairball, providing a web-interface to analyze Scratch projects and
offering feedback to improve programming skills. Based on the
analyzed Scratch project, Dr. Scratch assigns a score to various
concepts such as abstraction, parallelism or logic. Like Dr. Scratch,
the Ninja Code Village [23] analyzes Scratch projects online and
provides feedback on CT concepts. Quality Hound [30] is another
online program analysis tool for the detection of code smells. The
ITCH (Individual Testing of Computer Homework for Scratch As-
signments) tool provides a run-time analysis of Scratch projects by
converting Scratch programs into Python code. Required test cases
are written in Python. Stahlbauer et al. [28] from the University of
Passau introduce Whisker1, a very comprehensive testing frame-
work that enables automated property-based testing of Scratch
programs. The tests interconnect with the Scratch environment,
so test cases can be built up using Scratch blocks. The team also
developed Litterbox2, an automated program analysis tool for static
code analysis that provides checks for a wide range of common bug
patterns in Scratch [10].

1https://github.com/se2p/whisker-main
2https://github.com/se2p/LitterBox

Figure 1: Parts of a TGraph Representation of Java Code

2.4 Code Analysis with TGraphs and GReQL
The assessment of code on a large scale, such as querying for so-
lution patterns in projects from the Scratch repository or from a
MOOC, requires an automated analysis of the code. As already
explained, we will represent the program structure by TGraphs,
apply the query language GReQL and use the automated assess-
ment system JACK. In static code analysis of textual programming
languages as an example, there are two main methods to represent
program code: an abstract syntax tree or a graph representation
[29]. The following describes a graph representation and a query
language that is used to assess code from textual programming
languages.

2.4.1 TGraph format. TGraph is a graph format specially designed
for software re-engineering [9]. TGraphs are directed graphs, ver-
tices and edges are typed, ordered and can carry attribute-value
pairs. Sets of TGraphs are represented by an underlying scheme,
so a particular scheme describes as an example the set of TGraphs
representing Java programs. A TGraph conforms to its underly-
ing scheme with respect to the element types (vertices, edges) and
their attribute assignments, as well as the edges incident with a
given vertex. The vertex degrees have to conform to the multiplic-
ities defined in the scheme. Multiple inheritance is supported for
vertex and edge types. [8] Figure 1 shows a reduced example of
a TGraph for a Java class "AJavaClass" defining a string-attribute
"anAttribute" and a constructor with a parameter "aParameter". Fur-
ther information can be found on the website of the Ebert research
group of the University Koblenz-Landau3. As mentioned above, the
TGraph format is currently used to represent code from textual
programming languages in a graph format.

2.4.2 GReQL (GUPRO Repository Query Language). GReQL [16]
is an expression language to query graph structures like TGraphs.
GReQL supports FWR (from-with-report) expressions. In the from
part variables to be used are declared by name and type. In the
with clause a regular path expression describes the structure to
be queried in the TGraph. The edge directions in the path expres-
sion are identified by --> or <--, grouping and subqueries are
supported. The report part returns attribute-values of vertices or
edges declared in the from part and found by the path expression.
Aggregate functions are supported. Further information can be

3https://www.uni-koblenz-landau.de/de/koblenz/fb4/ist/rgebert/research/intern/TGraphen
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found on the website of the Ebert research group at the University
Koblenz-Landau4.

2.4.3 JACK. The University of Duisburg-Essen developed and
maintains JACK [13], a system to automatically assess and ana-
lyze program code written in languages like Java, Haskell and R
as well as UML diagrams and mathematical solutions. To analyze
the artifacts with JACK they are transformed into a TGraph. This
representation can then be queried for elements and structures
using GReQL [16]. The JACK system can be operated both on a
scalable server environment and as a stand-alone Java version. We
currently use JACK to evaluate Java code in a MOOC to provide
automated feedback. As a next step, we aim to evaluate Scratch
code in MOOCs online and to analyze code structures in Scratch
projects form the Scratch repository on a large scale with the JACK
stand-alone version.

3 CONTEXT
To validate a promising approach to investigate patterns in Scratch,
we wanted to analyze Scratch projects that were created under
consistent conditions. We used the projects created in a series of
programming courses with school children between the age of 8
and 12 years that we had conducted recently. They took place in
an out-of-school learning facility and were all held by the same
instructor. Whole school classes took part in the course as part of
a school trip and it was also offered as a holiday course in which
children could register voluntarily. A total of 108 boys and 24 girls
took part in the courses - in 11 cases, no information on gender
was provided (n=143).

The courses consisted of two or three 3-hour units that focused
on creating games in Scratch. During the course, the students pro-
grammed three different mini-games by followingworked examples
– a step-by-step demonstration of how a problem can be solved.
During these exercises, they had learned several solution patterns,
such as the collision-pattern. Afterward, the students were asked
to develop individual game ideas and to implement them in Scratch.
They were not told what kind of thematic elements the games
should contain, nor were they explicitly asked to use the previ-
ously introduced patterns. The subsequent analysis of the students’
games should focus on how the introduced patterns are re-used
and adapted.

4 METHODOLOGY
To enable automated analysis of Scratch code, we aimed to represent
the projects by TGraphs. Yet, up to now, TGraphs have been applied
only for textual programming languages. Therefore, we had to
develop a TGraph scheme for Scratch programs. As a first step, we
analyzed the structure of the Scratch file in detail. The scheme of
the vertex and edge class hierarchy to represent Scratch projects in
a TGraph is based on the structure of Scratch files. Transforming
Scratch program code into a TGraph representation is then done by
parsing the Scratch code file and building the TGraph according to
the scheme for Scratch projects. This enables us to perform GReQL
queries for specific structures such as solution patterns within the
TGraph representation of Scratch projects on a large scale.
4https://www.uni-koblenz-landau.de/en/campus-koblenz/fb4/ist/rgebert/research/
Graphtechnology/graph-repository-query-language-greql

Figure 2: Scratch Example of Code

4.1 Structure of a Scratch Project File
Scratch projects contain a stage and 0-n sprites. Both the sprites
and the stage can be programmed by placing sequences of blocks
on a sprite or the stage. Images and sound can be used to further
animate projects.

A project file in Scratch 3 is stored as a ZIP archive file. It contains
all information about the project, including all images- and sound
files. The actual program code, the blocks of every sprite as of the
stage, is stored in a file named project.json in the Javascript Object
Notation (JSON) format5.

The project.json file is divided into four main parts:
• targets: all information about the stage and the sprites of the
project

• monitors: list of all variables displayed on the stage during
the execution of the program

• extension: list of the extensions used in the project. Exten-
sions are used to connect external hardware, to use video
sensing, music, ...

• meta: meta-information on the project, such as the Scratch
version

The targets property in the project.json file, as shown in Figure 2,
provides the main information for the stage and each sprite: isStage
(boolean), name (of the stage or sprite), variables (defined), lists
(defined), broadcasts and blocks (used on the stage or the sprite),
comments, currentCostume, costumes, sounds, volume, layerOrder.

4.2 Scratch Block Types
The Scratch programming environment offers different block cate-
gories such as motion, looks or sound. Besides the category, each

5https://en.scratch-wiki.info/wiki/Scratch_File_Format
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Figure 3: Scratch Block Shape Types

block belongs to a certain shape-type. As shown in Figure 3, the
five main types are:

• Hat: starting event of a block sequence
• Stackable: have a bottom notch to connect with other blocks
• C blocks: blocks can be placed in the inside. With the excep-
tion of the forever block, all C-blocks are stackable.

• Value: blocks to sense, report or manipulate values
• Boolean: blocks return boolean values

4.3 Building a TGraph from a Scratch Project
JGraLab is a Java graph library and modeling framework, designed
and maintained by the JGraLab team of the University of Koblenz-
Landau6. It offers support for building and traversing TGraphs that
conform to the underlying scheme with respect to the element
types (vertices, edges) and their attribute assignments, as well as
incidences of the edges and vertex degrees corresponding to the
defined multiplicities.

4.3.1 TGraph Scheme for the Representation of Scratch Projects.
At first, we designed a scheme for TGraphs representing Scratch
projects. The names of the vertex and edge classes and their at-
tributes follow the respective properties in the JSON file of Scratch
projects. The attribute values are assigned when creating a corre-
sponding TGraph.

An extract from the proposed scheme to transform Scratch code
into TGraphs is shown in a reduced form in Listing 1. Figure 4
shows an extract of the vertex class hierarchy of the scheme. The
proposed scheme for Scratch projects largely reflects the hierarchy
of the JSON file (Figure 2). In some parts, we added additional vertex
classes and made use of multiple inheritance, which is supported by
the TGraph format. The use of additional hierarchies and multiple
inheritance can greatly simplify the creation of GReQL queries on
TGraphs. As an example, Scratch offers three loop blocks: repeat
with a counter, repeat until and repeat forever. If the pattern to
be investigated shall contain any kind of those loop blocks, it is
not necessary to query for all applicable loop blocks, but instead,
the parent class vertex definition, ControlRepeatC, can be taken
(Figure 4).

6https://jgralab.github.io/jgralab/

Listing 1: Extract of the Definition of Vertex Classes from
the TGraph Scheme for Scratch Projects
GraphClass Scratch3;

abstract VertexClass Node;
VertexClass ScratchProject:Node{name:String };
abstract VertexClass Element:Node;
VertexClass Block:Element;
abstract VertexClass Targets:Element;
VertexClass Stage:Targets{currentCostume:Long , ...};
VertexClass Sprite:Targets{name:String ,currentCostume:Long , ...}
abstract VertexClass BlockType:Block;
abstract VertexClass Stackable:BlockType;
VertexClass HatBlock:Stackable;
abstract VertexClass TopStackable:Stackable;
VertexClass StackBlock:TopStackable;
VertexClass CBlock:TopStackable;
abstract VertexClass BlockClass:Block;
VertexClass EventsBlock:BlockClass;

abstract VertexClass MotionStackBlock:MotionBlock ,StackBlock;
VertexClass Motion_glideto:MotionStackBlock;

abstract VertexClass EventHat:EventsBlock ,HatBlock;
VertexClass Event_whenkeypressed:EventHat;

Besides all vertex classes and their hierarchy, the scheme also
defines the possible connections between vertex classes through
edges and their multiplicities. Listing 2 shows an extract of the
scheme definition of edge classes.

Listing 2: Extract of the Definition of Edge Classes from the
TGraph Scheme for Scratch Projects
abstract EdgeClass ChildTargetCall from Node (0,1) to Node (0,*);
abstract EdgeClass Child:ChildTargetCall from Node (0,1) to Node (0,*);
EdgeClass SpriteDescription:Child from ScratchProject (1,1)

to Sprite (0,*) role spriteTarget;
EdgeClass CostumeDescription:Child from Targets (1,1)

to Costumes (1,*) role costume;
EdgeClass BlockBundleDeclaration:Child from Targets (1,1)

to Block (0,*) role blockStart;
EdgeClass SubStackNext:Child from Substack (1,1)

to Block (0,1) role next;
EdgeClass StackedNext:Child from Stackable (1,1)

to TopStackable (0,1) role next2;
EdgeClass InputDescription:Child from Block (1,1)

to InputType (0,*) role inputType;
EdgeClass InputContentStackDeclaration:Child from InputType (0,1)

to Block (0,1) role inputBlock;
EdgeClass FieldDescription:Child from Block (1,1)

to Fields (0,*) role fields;

4.3.2 Parsing the Scratch JSON and Generating the TGraph. In the
next step, the JSON in the Scratch file is parsed and the correspond-
ing TGraph is created by instances of specific Java classes created
by JGraLab based on the Scratch scheme for TGraphs. These classes
provide methods for creating new vertices and edges from the gen-
erated classes to ensure that only TGraphs that conform to the
schema can be built.

A final resulting TGraph is represented by Figure 5. It shows the
reduced form of a sprite that follows the mouse-pointer (Figure 2).

4.4 Searching Structures by GReQL Queries
The representation of the Scratch project by a TGraph allows us
to search for any block structures within Scratch projects with a
GReQL query. The GReQL query for the solution pattern mouse
follower (Figure 6) is shown in Listing 3. This solution pattern is
introduced in our Scratch courses.
In the from part the variables used in the with part are declared
by a name and their vertex or edge type. As a starting point of
the script on a sprite, the class "Hatblock" is chosen instead of the
class "EventHat" in the path expression. The Hatblock class contains
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Figure 4: Extract of the Vertex Class Hierarchy of the TGraph Scheme for Scratch Projects

custom procedures (my blocks), so if the solution pattern is used in a
custom procedure, it should also be selected. The path expression in
the with part in this simple example mainly follows the path of the
respective TGraph (Figure 5). The Kleene operator * after the edge
"Child" at hatBlock–>{Child}* controlForever –>{Child}*
motionGoto ensures that block structures with additional blocks
of any kind before and in the substack of the forever loop are also
selected. Figure 6 presents different solution patterns found by the
GReQL-query Listing 3.

Listing 3: GReQL Query of the Mouse Follower Pattern
from

project:V{ScratchProject}, sprite:V{Sprite}, hatBlock:V{HatBlock
}, controlForever:V{Control_forever}, motionGoto:V{
Motion_goto}, fields:V{Fields}

with
(project -->{ SpriteDescription }* sprite -->{

BlockBundleDeclaration} hatBlock -->{Child}* controlForever
-->{Child}* motionGoto -->{InputDescription} -->{

InputContentStackDeclaration }-->{FieldDescription} fields
and (fields.value = "_mouse_" )= true )

report
project.name as "Project", sprite.name as "Sprite"

end

Figure 6: Variations of the Mouse Follower Pattern

4.5 Analysis Process with JACK
Figure 7 shows the main process for analyzing Scratch programs by
using GReQL queries on TGraphs. The scratch program code from
the JSON file is parsed and a TGraph is created according to the
defined scheme for Scratch projects. Any kind of GReQL query can
then be executed by the checker process, which as a result returns
all structures found in the TGraph. For our research, we used the
stand-alone Checker from JACK, which runs on PCs. JACK also
provides an online interface so that users can upload their code and
receive direct feedback, for example in a MOOC.

Figure 7: Analysis Process of a Scratch Project

5 FIRST RESULTS
In our feasibility study, 143 students independently developed a
total of 295 Scratch game projects. In order to assess how pre-
learned solution patterns are reused, adapted, or extended in the
individual projects we created a GReQL query in two ways for each
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Figure 5: Reduced TGraph of the Mouse Follower Pattern

solution pattern introduced in the guided exercises (mini-games).
One query searches for the exact match on the introduced pattern,
a second for patterns that have been adapted or extended. An exact
match is achieved when the pattern is reused block by block without
adaptation or extension. Parameter literals could be included in
the GReQL query, in our case we did not check them for equality.
An adaption is taken into account when the student exchanges
blocks in the pattern. As an example in the collision pattern when
a motion block is used instead of the say block. An extension exists
when additional blocks are added to the pattern.

Figure 8: Solution Patterns

5.1 Use of Solution Patterns
We searched the student projects for the solution patterns shown
in figure 8 using GReQL queries on the TGraph representation of
the Scratch projects. The GReQL query in Listing 4 looks for any
representative of the collision pattern (figure 8) in the students’
Scratch projects that have not been modified in any way, except
for possible changes of the parameter literals. Figure 9 shows an
example of a Scratch project, represented in the TGraph format,
that contains the collision pattern.

Listing 4: GReQL Query of the Collision Pattern with no
Adaption
from
project:V{ScratchProject}, sprite:V{Sprite},eventKey:V{

Event_whenkeypressed}, forever:V{Control_forever},
substackForever:V{Substack}, if:V{Control_if}, substackIf:V{
Substack}, sayForSecs:V{Looks_sayforsecs}, booleanOp:V{
BooleanOp}, sensingTouching:V{Sensing_touchingobject}, fields
:V{Fields}

with
(project -->{ SpriteDescription} sprite -->{BlockBundleDeclaration}

eventKey -->{StackedNext} forever --> {SubstacksOf}
substackForever -->{SubStackNext} if --> {SubstacksOf}
substackIf --> {SubStackNext} sayForSecs and isEmpty(
sayForSecs -->{StackedNext }) and if -->{InputDescription}
booleanOp -->{InputContentStackDeclaration} sensingTouching
--> {Child}* fields and (fields.value = "_mouse_" )= false
and (fields.value = "_edge_" )= false)

report project.name as "Project", sprite.name as "Sprite"
end

Listing 5 represents the GReQL query that searches for the colli-
sion pattern in consideration of adaptions and extensions.

Listing 5: GReQL Query of the Collision Pattern with Possi-
ble Adaptions
from
project:V{ScratchProject}, sprite:V{Sprite},eventKey:V{

Event_whenkeypressed}, forever:V{Control_forever},
substackForever:V{Substack}, if:V{Control_if}, substackIf:V{
Substack}, booleanOp:V{BooleanOp}, sensingTouching:V{
Sensing_touchingobject}, fields:V{Fields}, anyNode:V{Node}

with
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Figure 9: Reduced TGraph of a Collision Pattern without
Adaption

(project -->{ SpriteDescription} sprite -->{BlockBundleDeclaration}
eventKey -->{Child}* forever --> {SubstacksOf} substackForever
-->{Child}* if --> {SubstacksOf} substackIf --> {Child}+

anyNode and if -->{InputDescription} booleanOp -->{
InputContentStackDeclaration} sensingTouching --> {Child}*
fields and (fields.value = "_mouse_" )= false and (fields.
value = "_edge_" )= false)

report project.name as "Project", sprite.name as "Sprite"
end

Table 1 shows the number of each implementation of the pattern
with and without adaptation in the student projects. Each use of
a pattern was counted only once per project. One GReQL query
searches for the solution patterns one to one without adaptation,
a second query searches for arbitrary code structures containing
the main parts required in the solution pattern. This is achieved
by using more general block classes in the GReQL queries, e.g.
by querying the block class MotionStackBlock instead of a specific
motion block (figure 4). The asterisk (*) in the query path expression
e.g. block1 –>{Child}* block2, ensures that extended solution
patterns are also recognized. Only active block sequences that are

Table 1: Re-Use of the introduced Solution Patterns in the
Student Projects (n=295)

Solution Pattern without adaptation adapted
Directed motion 110 (37%) 4 (1%)
Collision 84 (28%) 46 (16%)
Gliding motion 58 (20%) 14 (5%)
Random gliding motion 19 (6%) 1 (0.3%)
Object follower 18 (6%) 8 (3%)
Mouse follower 11 (4%) 0 (0%)
Counter 15 (5%) 6 (2%)
Termination by counter 17 (6%) 0 (0%)
Termination by collision 10 (3%) 13 (4%)

Figure 10: Adapted Collision Pattern

connected to a Hat block are counted. Of all game projects, 99
contained sprites with block sequences but did not make use of any
of the presented solution patterns.

As a proof of concept, we manually checked the occurrence
of two patterns without any adaptions in all 295 projects by one
person. The manually identified projects were exactly the same as
found by the GReQL queries on the TGraph representations of the
projects.

5.1.1 Example of an Adaption of the Collision Pattern. Figure 10
represents an adaptation of the pattern collision. The student has
extended this pattern with elements of the pattern termination by
counter (figure 8). The main goal was to show a sprite displaying a
text in the event of a collision.

5.2 Advanced Code Structures and Concepts
Grover at al. [15] identified misconceptions and challenges in the
use of variables, loops and boolean operators. In the guided exer-
cises we introduced some more complex code structures, such as
nested conditions in loops and the use of variables and random
number blocks. Table 2 shows the number of each use of the code
structures. Each structure was counted at each occurrence. Nested
conditions were not introduced to the students. As a result, we
could only find one project with nested conditions.
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Table 2: Advanced Code Structures and Concepts used in the
Student Projects (n=295), counted at each occurrence

Code Count
Nested condition in loop 155
Nested loops 7
Nested conditions 1
Variables 42
Boolean operator 21
Random block 25

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a feasibility study for a methodology to
investigate the use of certain solution patterns in a large number
of Scratch projects.

The first results demonstrate that we were able to detect patterns
like collision, directed motion, termination by collision or gliding
motion, see Table 1. In addition, we could find out how far advanced
programming concepts like nested conditions or nested repetition
were used, see Table 2. As part of our feasibility study, we also
compared the results of our methodology with those of a manual
analysis of the Scratch projects. Since the results were completely
consistent, they show the validity of the method.

Our method – conducting GReQL queries on TGraph representa-
tions of Scratch programs – offers versatile search options for code
structures. Not only one-to-one representations but also adapted
or extended patterns can be found by a wildcard search. It must
be noted though that GReQL is a very powerful SQL-like query
language that requires training and can be quite tricky in detail.
Compared to other tools that offer static code analysis of Scratch
code, the advantage is that any kind of code structure can be queried
without having to modify an existing program, as for example in the
plugin system of Hairball [6]. Even though our number of projects
(n=295) could have been analyzed manually with great effort, the
method opens up the possibility to examine larger quantities of
projects, such as the Scratch repository or results of MOOCs.

In summary, the presented method for querying Scratch block
structures on TGraphs offers broad support in the search for any
solution patterns. Therefore, it can help to answer the question of
how students implement and adapt pre-learned solution patterns.
However, further analysis of the existing data is needed, using a
mixed-method approach where parts of the projects are qualita-
tively analyzed manually.

We are currently developing a GreQL query editor that generates
GReQL queries based on Scratch code. Furthermore, we are working
on an importer that brings TGraphs into the graph database Neo4j7.
This will even make it possible to run queries on millions of projects
from the Scratch repository. In combination with JACK [13], the
presented TGraph parser could also be used to generate online
feedback, e.g. on code smells in Scratch code. To further investigate
the use of programming patterns in Scratch, we plan to conduct
a study with novice programmers, which will explicitly focus on
how students reuse, adapt and extend introduced patterns to solve
different types of problems.

7https://neo4j.com/
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