
Learners’ perspectives on block-based programming
environments: Code.org vs. Scratch

Johannes Krugel
Technical University of Munich

School of Education
Munich, Germany
krugel@tum.de

Alexander Ruf
Technical University of Munich

School of Education
Munich, Germany

alexander.ruf@tum.de

ABSTRACT
We report from a comparative study regarding two popular block-
based programming environments for the introduction of algorith-
mic concepts, namely Code.org and Scratch. A quasi-experiment
was conducted with five classes (grade 7) from two secondary
schools (n = 122). To investigate the effects of both learning envi-
ronments, the students were divided into two groups.

Following a mixed-methods research approach, we use quantita-
tive and qualitative methods to gain a comprehensive understand-
ing of learner’s perspectives and skills. We measure the learners’
perceived self-regulation and intrinsic motivation. The learners
of Code.org show a higher intrinsic motivation compared to the
Scratch group. Qualitative analyses of answers to open-ended ques-
tions reveal positive and negative aspects of the learning environ-
ments. With Code.org, the learners in particular like the fun and
the challenges, while for Scratch, they like the feeling of actually
programming something and the very free environment.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction; In-
teractive learning environments; • Social and professional topics
→ Computational thinking; K-12 education.

KEYWORDS
Interactive learning environments, Block-based programming, Al-
gorithmic thinking, Computational Thinking, Motivation
ACM Reference Format:
Johannes Krugel and Alexander Ruf. 2020. Learners’ perspectives on block-
based programming environments: Code.org vs. Scratch. In Workshop in
Primary and Secondary Computing Education (WiPSCE ’20), October 28–30,
2020, Virtual Event, Germany. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3421590.3421615

1 INTRODUCTION
Computational Thinking is considered to be an important ability
every student should learn in school [12]. Block-based program-
ming languages are frequently used for teaching nowadays [1, 10].
We focus on web-based tools because they can easily be used in a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WiPSCE ’20, October 28–30, 2020, Virtual Event, Germany
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8759-0/20/10.
https://doi.org/10.1145/3421590.3421615

flipped classroom setting [3] or when learning at scale [4]. This is of
special interest in the current COVID-19 ("Coronavirus") pandemic
where students have to learn at home with their own devices.

2 TEACHING INTERVENTIONS
We target learners without any previous knowledge of algorithms
and compare teaching with Code.org and Scratch. The learning
objectives cover basic algorithmic concepts usually included rela-
tively at the beginning of courses on computational thinking [5].
Due to the COVID-19 pandemic, the students learned at home with
detailed instructions prepared by the teachers (both authors of this
paper). They received a 1-page working sheet each week with read-
ing instructions, links to explanation videos, and exercises. The
format of the tasks varied to include different categories [2]. We did
explicitly not make the learning sequence of both groups exactly the
same because this would contradict the inherent differences of the
learning environments. The learning objectives and the difficulty
was, however, very similar. The first experimental group learned
on Code.org with the Accelerated course1. The learners program
a figure on the screen to, e. g., follow a path in a maze or to draw
geometric shapes. The course is based on game-based learning and
microlearning, consisting of a series of small games with several
levels. The course contains short videos introducing the concepts
(in English with German subtitles); we created 13 additional short
explanatory videos very similar to the videos of the Scratch group.
The second group learned with the web-based Scratch 3.02. Figures
can be programmed to move on the screen, perform other actions
and react to events. Similar to Code.org, the figures also draw geo-
metric shapes (using the Pen extension). The teaching material is
based on a continuing education course for teachers3 and includes
18 explanatory videos of an experienced teacher.

1https://studio.code.org/s/20-hour/
2https://scratch.mit.edu/projects/editor/
3https://lehrerfortbildung-bw.de/u_matnatech/informatik/gym/bp2016/fb1/

T0 (Week 1):

- Motivation SRQ-A

- Pre-Test

T2 (Week 9):

- Motivation SRQ-A

- Motivation KIM

- Qualitative

- Post-Test

T1 (Week 4):

- Motivation KIM

- Qualitative

Code.org Code.org

Scratch Scratch

(I
co

n
s 

b
y

F
re

ep
ik

o
n
 F

la
ti

co
n
)

Figure 1: Study Design

© ACM, 2020 This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The 
definitive version was published in: WiPSCE '20 Proceedings of the 15th Workshop on Primary and Secondary Computing Education (2020)
http://doi.acm.org/10.1145/3421590.3421615

https://doi.org/10.1145/3421590.3421615
https://doi.org/10.1145/3421590.3421615
https://doi.org/10.1145/3421590.3421615
https://studio.code.org/s/20-hour/
https://scratch.mit.edu/projects/editor/
https://lehrerfortbildung-bw.de/u_matnatech/informatik/gym/bp2016/fb1/


WiPSCE ’20, October 28–30, 2020, Virtual Event, Germany Johannes Krugel and Alexander Ruf

3 METHODOLOGY
We conducted a quasi-experiment with 5 classes of two secondary
schools in grade 7, where Computer Science is a compulsory subject
and has 1 lesson (45 minutes) per week. There were 122 students
of age 12–14 with a balanced gender distribution, see Table 1. The
intervention spans 9 weeks and we collect data at three time points
T0, T1, and T2. At the time of writing this paper we had completed
the first 5 weeks and data collections at T0 and T1. The research
design is visualized in Figure 1. Other similar experiments often
focus on quantitative methods [8, 9]. We use a mixed-methods ap-
proach to compensate the weaknesses and combine the strengths of
quantitative and qualitative methods. We use a pre-test, a post-test,
and free text feedback. Additionally we employ the "Academic Self-
Regulation Questionnaire" (SRQ-A) which can be used to determine
the self-determination index (SDI) [7]. The intrinsic motivation is
assessed with the KIM instrument [11] with 4 subscales, see Table 1.

4 RESULTS REGARDING THE MOTIVATION
At the beginning of our study T0, both experimental groups have
the same average SDI of 2.21 (see Table 1). AtT1, we received 79 re-
sponses regarding the intrinsic motivation. In this paper, we analyze
the data with a relatively simple comparison based on the arithmetic
mean of the Likert items (like [8]). The students of Code.org exhibit
have a higher intrinsic motivation (with consistently higher aver-
age value on the individual subscales Interest/Enjoyment, Perceived
Competence and Perceived Choice, and a lower value for Pressure).
This was surprising for us because we expected a higher intrinsic
motivation for Scratch which offers more freedom to the learners.
Our mixed-methods approach proved to be helpful here because
the qualitative analyses yields further insights.

5 QUALITATIVE RESULTS
The answers to the qualitative survey were analyzed using an in-
ductive qualitative content analysis based on the methodology of
Kyngäs [6]. Each answer could be assigned to multiple categories.
We performed several iterations over the data to adapt and refine
while maintaining a coding manual. This resulted in 18 positive
and 15 negative aspects.

For Code.org, the mentioned positive aspects of the learners
frequently fall into the categories Fun and Challenges (e. g. "I had
to think but at the same time it was fun."), as well as Easiness and
Usability (e. g. "It is very easy to understand and you only have to

Table 1: Quantitative results per learning environment (T0
and T1 denote the respective number of participants).

Group n Fe
m
al
e
/

M
al
e

T0 SDI T1 In
te
re
st
/

En
jo
ym

en
t

Pe
rc
ei
ve
d

Co
m
pe
te
nc
e

Pe
rc
ei
ve
d

Ch
oi
ce

Pr
es
su
re
/

Te
ns
io
n

Code.org 47 24/23 43 2.21 34 3.21 2.98 3.21 0.73
Scratch 75 38/37 67 2.21 45 3.02 2.80 2.93 0.85

Total 122 62/60 108 2.21 79 3.11 2.89 3.06 0.79

pull blocks together."). The most prominent negative aspects is, that
some students regard the exercises as too easy.

For Scratch, the by far most frequent category of positive as-
pects is Programming, followed by Trying out (e. g. "I liked to do my
own programming and just try out how that works."). Also aspects
related to the freedom of the learning environment are frequently
mentioned (e. g. "With Scratch you can make the character do al-
most anything."). As negative aspects, the learners mentioned the
difficulty, especially at the beginning of the sequence and some
technical issues. This perceived difficulty is probably also due to
the fact that Scratch offers a rich set of functionality which might
be overwhelming for some beginners; we assume that this is also
an explanation for the relatively lower intrinsic motivation.

6 CONCLUSION
A limitation is the number of participants and the non-random
assignment to the experimental groups. Additionally, only a fraction
of the learners participated in data collection T1. However, at T2
we were able to collect data from the majority of students. The
analysis of this data will provide a more detailed view and allows
the comparison of the whole teaching sequences, including the
achieved learning outcomes.

REFERENCES
[1] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.

Learnable Programming: Blocks and Beyond. Commun. ACM 60, 6 (May 2017),
72–80. https://doi.org/10.1145/3015455

[2] Katharina Geldreich, Mike Talbot, and Peter Hubwieser. 2019. Aufgabe ist nicht
gleich Aufgabe – Vielfältige Aufgabentypen bewusst in Scratch einsetzen. In
Informatik für alle, Arno Pasternak (Ed.). Gesellschaft für Informatik, Bonn, 171–
190. https://doi.org/10.18420/infos2019-c3

[3] Jeong Ah Kim and Hee Jin Kim. 2017. Flipped Learning of Scratch Programming
with Code.Org. In Proceedings of the 2017 9th International Conference on Education
Technology and Computers (Barcelona, Spain) (ICETC 2017). ACM, New York, NY,
USA, 68–72. https://doi.org/10.1145/3175536.3175542

[4] Johannes Krugel and Peter Hubwieser. 2017. Computational thinking as spring-
board for learning object-oriented programming in an interactive MOOC. In
2017 IEEE Global Engineering Education Conference (EDUCON). IEEE, 1709–1712.
https://doi.org/10.1109/EDUCON.2017.7943079

[5] Johannes Krugel and Peter Hubwieser. 2018. Strictly Objects First: A Multipurpose
Course on Computational Thinking. Springer International Publishing, Cham,
73–98. https://doi.org/10.1007/978-3-319-93566-9_5

[6] Helvi Kyngäs. 2020. Inductive Content Analysis. Springer International Publishing,
Cham, 13–21. https://doi.org/10.1007/978-3-030-30199-6_2

[7] Florian H. Müller, Barbara Hanfstingl, and Irina Andreitz. 2007. Skalen zur
motivationalen Regulation beim Lernen von Schülerinnen und Schülern: Adaptierte
und ergänzte Version des Academic Self-Regulation Questionnaire (SRQ-A) nach
Ryan & Connell, Wissenschaftliche Beiträge aus dem Institut für Unterrichts- und
Schulentwicklung. Technical Report. Alpen-Adria-Universität Klagenfurt.

[8] Alexander Ruf, Andreas Mühling, and Peter Hubwieser. 2014. Scratch vs. Karel:
Impact on Learning Outcomes and Motivation. In Proceedings of the 9th Workshop
in Primary and Secondary Computing Education (Berlin, Germany) (WiPSCE ’14).
ACM, New York, NY, USA, 50–59. https://doi.org/10.1145/2670757.2670772

[9] Mazyar Seraj, Eva-Sophie Katterfeldt, Kerstin Bub, Serge Autexier, and Rolf
Drechsler. 2019. Scratch and Google Blockly: How Girls’ Programming Skills
and Attitudes Are Influenced. In Proceedings of the 19th Koli Calling International
Conference on Computing Education Research (Koli Calling ’19). ACM, New York,
NY, USA, Article 23, 10 pages. https://doi.org/10.1145/3364510.3364515

[10] DavidWeintrop. 2019. Block-Based Programming in Computer Science Education.
Commun. ACM 62, 8 (July 2019), 22–25. https://doi.org/10.1145/3341221

[11] Matthias Wilde, Katrin Bätz, Anastassiya Kovaleva, and Detlef Urhahne. 2009.
Überprüfung einer Kurzskala intrinsischer Motivation (KIM). Zeitschrift für
Didaktik der Naturwissenschaften 15 (2009), 31–45.

[12] Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (March
2006), 33–35. https://doi.org/10.1145/1118178.1118215

https://doi.org/10.1145/3015455
https://doi.org/10.18420/infos2019-c3
https://doi.org/10.1145/3175536.3175542
https://doi.org/10.1109/EDUCON.2017.7943079
https://doi.org/10.1007/978-3-319-93566-9_5
https://doi.org/10.1007/978-3-030-30199-6_2
https://doi.org/10.1145/2670757.2670772
https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1145/3341221
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 Introduction
	2 Teaching Interventions
	3 Methodology
	4 Results regarding the Motivation
	5 Qualitative results
	6 Conclusion
	References

