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ABSTRACT
We report from a comparative study regarding two popular block-
based programming environments for the introduction of algorith-
mic concepts, namely Code.org and Scratch. A quasi-experiment
was conducted with five classes (grade 7) from two secondary
schools (n = 122). To investigate the effects of both learning envi-
ronments, the students were divided into two groups.

Following a mixed-methods research approach, we use quantita-
tive and qualitative methods to gain a comprehensive understand-
ing of learner’s perspectives and skills. We measure the learners’
perceived self-regulation and intrinsic motivation. The learners
of Code.org show a higher intrinsic motivation compared to the
Scratch group. Qualitative analyses of answers to open-ended ques-
tions reveal positive and negative aspects of the learning environ-
ments. With Code.org, the learners in particular like the fun and
the challenges, while for Scratch, they like the feeling of actually
programming something and the very free environment.

CCS CONCEPTS
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1 INTRODUCTION
Computational Thinking is considered to be an important ability
every student should learn in school [12]. Block-based program-
ming languages are frequently used for teaching nowadays [1, 10].
We focus on web-based tools because they can easily be used in a
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flipped classroom setting [3] or when learning at scale [4]. This is of
special interest in the current COVID-19 ("Coronavirus") pandemic
where students have to learn at home with their own devices.

2 TEACHING INTERVENTIONS
We target learners without any previous knowledge of algorithms
and compare teaching with Code.org and Scratch. The learning
objectives cover basic algorithmic concepts usually included rela-
tively at the beginning of courses on computational thinking [5].
Due to the COVID-19 pandemic, the students learned at home with
detailed instructions prepared by the teachers (both authors of this
paper). They received a 1-page working sheet each week with read-
ing instructions, links to explanation videos, and exercises. The
format of the tasks varied to include different categories [2]. We did
explicitly not make the learning sequence of both groups exactly the
same because this would contradict the inherent differences of the
learning environments. The learning objectives and the difficulty
was, however, very similar. The first experimental group learned
on Code.org with the Accelerated course1. The learners program
a figure on the screen to, e. g., follow a path in a maze or to draw
geometric shapes. The course is based on game-based learning and
microlearning, consisting of a series of small games with several
levels. The course contains short videos introducing the concepts
(in English with German subtitles); we created 13 additional short
explanatory videos very similar to the videos of the Scratch group.
The second group learned with the web-based Scratch 3.02. Figures
can be programmed to move on the screen, perform other actions
and react to events. Similar to Code.org, the figures also draw geo-
metric shapes (using the Pen extension). The teaching material is
based on a continuing education course for teachers3 and includes
18 explanatory videos of an experienced teacher.

1https://studio.code.org/s/20-hour/
2https://scratch.mit.edu/projects/editor/
3https://lehrerfortbildung-bw.de/u_matnatech/informatik/gym/bp2016/fb1/
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Figure 1: Study Design
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3 METHODOLOGY
We conducted a quasi-experiment with 5 classes of two secondary
schools in grade 7, where Computer Science is a compulsory subject
and has 1 lesson (45 minutes) per week. There were 122 students
of age 12–14 with a balanced gender distribution, see Table 1. The
intervention spans 9 weeks and we collect data at three time points
T0, T1, and T2. At the time of writing this paper we had completed
the first 5 weeks and data collections at T0 and T1. The research
design is visualized in Figure 1. Other similar experiments often
focus on quantitative methods [8, 9]. We use a mixed-methods ap-
proach to compensate the weaknesses and combine the strengths of
quantitative and qualitative methods. We use a pre-test, a post-test,
and free text feedback. Additionally we employ the "Academic Self-
Regulation Questionnaire" (SRQ-A) which can be used to determine
the self-determination index (SDI) [7]. The intrinsic motivation is
assessed with the KIM instrument [11] with 4 subscales, see Table 1.

4 RESULTS REGARDING THE MOTIVATION
At the beginning of our study T0, both experimental groups have
the same average SDI of 2.21 (see Table 1). AtT1, we received 79 re-
sponses regarding the intrinsic motivation. In this paper, we analyze
the data with a relatively simple comparison based on the arithmetic
mean of the Likert items (like [8]). The students of Code.org exhibit
have a higher intrinsic motivation (with consistently higher aver-
age value on the individual subscales Interest/Enjoyment, Perceived
Competence and Perceived Choice, and a lower value for Pressure).
This was surprising for us because we expected a higher intrinsic
motivation for Scratch which offers more freedom to the learners.
Our mixed-methods approach proved to be helpful here because
the qualitative analyses yields further insights.

5 QUALITATIVE RESULTS
The answers to the qualitative survey were analyzed using an in-
ductive qualitative content analysis based on the methodology of
Kyngäs [6]. Each answer could be assigned to multiple categories.
We performed several iterations over the data to adapt and refine
while maintaining a coding manual. This resulted in 18 positive
and 15 negative aspects.

For Code.org, the mentioned positive aspects of the learners
frequently fall into the categories Fun and Challenges (e. g. "I had
to think but at the same time it was fun."), as well as Easiness and
Usability (e. g. "It is very easy to understand and you only have to

Table 1: Quantitative results per learning environment (T0
and T1 denote the respective number of participants).
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Code.org 47 24/23 43 2.21 34 3.21 2.98 3.21 0.73
Scratch 75 38/37 67 2.21 45 3.02 2.80 2.93 0.85

Total 122 62/60 108 2.21 79 3.11 2.89 3.06 0.79

pull blocks together."). The most prominent negative aspects is, that
some students regard the exercises as too easy.

For Scratch, the by far most frequent category of positive as-
pects is Programming, followed by Trying out (e. g. "I liked to do my
own programming and just try out how that works."). Also aspects
related to the freedom of the learning environment are frequently
mentioned (e. g. "With Scratch you can make the character do al-
most anything."). As negative aspects, the learners mentioned the
difficulty, especially at the beginning of the sequence and some
technical issues. This perceived difficulty is probably also due to
the fact that Scratch offers a rich set of functionality which might
be overwhelming for some beginners; we assume that this is also
an explanation for the relatively lower intrinsic motivation.

6 CONCLUSION
A limitation is the number of participants and the non-random
assignment to the experimental groups. Additionally, only a fraction
of the learners participated in data collection T1. However, at T2
we were able to collect data from the majority of students. The
analysis of this data will provide a more detailed view and allows
the comparison of the whole teaching sequences, including the
achieved learning outcomes.
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