

Web-based learning in computer science:

Insights into progress and problems of learners

in MOOCs

Johannes Krugel and Peter Hubwieser

Technical University of Munich, School of Education, Munich, Germany

Abstract Web-based resources and massive open online courses (MOOCs) are

promising forms of non-formal and technology-enhanced learning. Advantages are

the flexibility regarding location and time and the possibilities for self-regulated

learning. Furthermore, web technologies have considerably evolved over the past

years, enabling complex interactive exercises and communication among the learn-

ers. However, online learning also has its challenges regarding, e.g., the motivation

and low completion rates in MOOCs.

Following a design-based research methodology, we designed, developed, and eval-

uated a MOOC for the introduction of object-oriented programming. In three course

runs, we collected extensive textual feedback from the participants which we ana-

lyzed inductive qualitative content analysis (QCA) by Mayring. We complement

this with quantitative analyses regarding the performance of the learners in the

course. The results give insights into the progress, preferences, and problems of

learners in MOOCs. We furthermore used these results as a basis for adapting the

course in the following iterations of our design-based research and observed a sig-

nificant increase in the course completion rate.

1 Introduction

Web-based learning is a form of technology-enhanced learning with the advantage

that the technical barriers are very low, for the learners as well as for the creators.

Massive open online courses (MOOCs) combine several web-based learning activ-

ities in the form of a course. MOOCs became an educational buzzword in 2012 and

have enjoyed wide media coverage in the popular press (Marshall, 2013). In contrast

to traditional ways of teaching, where the size of participants is restricted, MOOCs

have to be easily scalable for large numbers of participants. They are usually free

for everybody and can be used for formal as well as non-formal learning. According

to the e-learning hype curve, MOOCs are already through the “Trough of Disillu-

sionment” and nearly on the “slope of enlightenment” (Hicken, 2018). Our focus in

this paper are MOOCs for the introduction of programming, especially object-ori-

ented programming.

1.1 Our MOOC

Computer science (CS) education in school is varying strongly in many coun-

tries. In Germany, for example, the implementation of CS education at school is

very diverse, unregulated and inconsistent in many states. In consequence, the pre-

requisite knowledge of freshmen at universities is very inhomogeneous (Hubwieser

et al., 2015). As students cannot be expected to be present at university before lec-

turing starts, MOOCs (massive open online courses) seem to represent potential

solutions to compensate or reduce these differences. This was the initial motivation

to develop our MOOC called “LOOP: Learning Object-Oriented Programming”.

The initial primary target group of the course are prospective students of science

or engineering that are due to attend CS lessons in their first terms. However, since

the course is available online and free for everybody, the target group now is a

world-wide audience (speaking German) and with a more diverse background.

As learning to program is a substantial cognitive challenge (Hubwieser, 2008),

MOOCs run in danger to overstrain the students, frustrating them already before

their studies. To meet this challenge, we carefully designed LOOP, starting with a

gentle introduction to computational thinking (Wing, 2006). The course is based on

the strictly objects first approach (Gries, 2008), introducing the concepts object,

attribute, and method just before class and before any programming activity. This

helps to avoid excessive cognitive load following when it comes to actually write

programs in an object-oriented programming language (in our course Java).

The course includes various interactive exercises to enable the learners to exper-

iment with the presented concepts. Furthermore, we implemented programming ex-

ercises with constructive feedback for the learners using a web-based integrated de-

velopment environment and additionally an automatic grading system.

A detailed description of the rationale behind the course design and the course

curriculum was published in (Krugel & Hubwieser, 2018). The results of a pilot run

of the course are presented in (Krugel & Hubwieser, 2017).

3

1.2 Research questions and research design

In this paper we examine the learners’ perspectives to gain insights into the pro-

gress, problems, and preferences of learners in MOOCs. In particular, we aim to

answer the following research questions:

1. What are learners’ preferences in self-regulated introductory programming

MOOCs?

2. What are the main challenges learners face in self-regulated introductory

programming MOOCs?

3. What are the main reasons for not finishing introductory programming

MOOCs?

The answers to those research questions are going to help to design self-learning

courses and improve existing courses. Following a design-based research method-

ology, we start with a literature review, implement a prototypical course, assess the

learning, and proceed in iterations (Design-Based Research Collective, 2003;

Plomp, 2007).

We collect both quantitative and qualitative data, utilizing a mixed-methods ap-

proach for the data analysis; this approach makes it possible to gain in breadth and

in depth understanding while balancing the weaknesses inherent in the use of each

individual approach. To understand the learner’s perspectives, we collected and an-

alyzed feedback of the course participants. We applied an inductive qualitative con-

tent analysis to categorize the responses. In terms of learning progress, we pursue

quantitative methods and conduced a hierarchical cluster analysis of participants’

scores in the assignments. We use the results of the analysis to adapt the teaching

and perform more iterations, observing the changes on the learners’ side.

This paper is structured as follows. As a background, we describe the design-

based research methodology, the foundations for the course design, and further re-

lated literature. Then we present the course design and its curriculum. The main part

of this paper is the description of our data analysis methodology and the results. We

conclude with a discussion of the limitations and an outlook.

2 Background and related work

In the following, we briefly describe the background of the research methodology,

related MOOCs for introductory CS, research on MOOC design and drop-out be-

havior.

2.1 Design-based research (DBR)

DBR is an empirical approach where the application and investigation of theories

is closely connected with the design and evaluation of learning interventions (De-

sign-Based Research Collective, 2003). There is not a unique definition of the term

but many authors agree that DBR encompasses a preliminary research, a prototyp-

ing phase, and an assessment phase (Plomp, 2007).

According to Reeves (2006), DBR consists of 4 phases: the analysis of a practical

problem, the development of a solution, testing and refinement of the solution in

practice, and a reflection to produce design principles, see Fig. 1. A main character-

istic of DBR is the systematic and iterative cycle of design, exploration, and rede-

sign (Design-Based Research Collective, 2003). The evaluation is often carried out

using a mixed-methods approach (Anderson & Shattuck, 2012). Using mixed-meth-

ods for the evaluation makes it possible to gain in-breadth and in-depth insights

while balancing the weaknesses inherent in the use of each individual approach.

DBR is nowadays widely used in different contexts of educational research, also

for learning programming and algorithmic thinking (Geldreich et al., 2019; Pa-

pavlasopoulou et al., 2019).

Fig. 1. Phases of design-based research (Reeves, 2006).

2.2 Research on MOOCs

There is an uncountable number of online courses for learning the basics of com-

puter science. Some examples of MOOCs (massive open online courses) and

SPOCs (small private online courses) that explicitly cover computational thinking

or object-oriented programming (OOP) and were published in the scientific litera-

ture are described by Liyanagunawardena et al. (2014), Piccioni et al. (2014), Falk-

ner et al. (2016), Alario-Hoyos et al. (2016), Kurhila and Vihavainen (2015), Vi-

havainen et al. (2012), Fitzpatrick et al. (2017) and Bajwa et al. (2019).

Several studies investigate the reasons of the learners for enrolling in MOOCs.

Crues et al. (2018) analyzed the responses to open-ended questions in five MOOCs;

they used methods from natural language processing (Latent Dirichlet Allocation)

and identified a set of 26 “topics” as reasons to enroll in a MOOC.

5

Luik, Suviste et al. (2019) developed and tested an instrument to measure the

motivational factors for enrolling in a programming MOOC.

Zheng et al. (2015) carried out interviews with participants of several MOOCs

and analyzed them using grounded theory; among others, they investigated reasons

for enrollment and how students learn in a MOOC.

In general, MOOCs are known to have a rather high dropout (Delgado Kloos et

al., 2014; Garcia et al., 2014; Piccioni et al., 2014) with completion rates usually in

the range of 5 – 10%.

Zheng et al. (2015) also analyzed the interviews regarding the reasons for not

completing a MOOC and identified 8 categories: High Workload, Challenging

Course Content, Lack of Time, Lack of Pressure, No Sense of Community or Aware-

ness of Others, Social Influence, Lengthy Course Start-Up, Learning on Demand.

In another study, Eriksson et al. (2017) carried out interviews with participants

of two MOOCs; the main result regarding the drop-out in MOOCs is that “Time is

the bottleneck”.

To assess the learner’s perspectives in MOOCs with a special focus on active

learning, Topali et al. (2019) analyzed questionnaires, forum posts and logs of the

learning platform; they discuss challenges of the learners and reasons for not com-

pleting the course.

Luik, Feklistova et al. (2019) investigate the connection of drop-out with demo-

graphic factors of the participants in three programming MOOCs. There are, fur-

thermore, many approaches to predict the drop-out probability of the learners based

on the data available in such online courses, see e.g., (Moreno-Marcos et al., 2020).

3 Course design

According to the DBR methodology by Reeves (2006), we started by analyzing

the needs of the learners and developing a solution based on existing design princi-

ples (phase 1 and phase 2). The course consists of a series of short videos, followed

by quizzes, interactive exercises, and a final exam. The communication of the learn-

ers and with the course team takes place in a discussion board. In the following, we

describe those course elements, and present the details of the course design.

3.1 Videos

All topics of the course are presented in short videos with an average length of 5

minutes. The videos were produced based on the suggestions of Guo et al. (2014)

and similar to the suggestions by Alonso-Ramos et al. (2016) published shortly after

our recording.

Each of the 24 videos begins with a short advance organizer to help the learners

focus on the relevant aspects. This is augmented with the talking head of the respec-

tive instructor (using chroma key compositing) facilitating the learners to establish

a personal and emotional connection (Alonso-Ramos et al., 2016).

For the actual content of the videos, we decided to use a combination of slides

and tablet drawing. The background of the video consists of presentation slides and

the instructor uses a tablet to draw and develop additional aspects or to highlight

important part of the slides. All slides are provided for download and we addition-

ally added audio transcripts for the videos. By such video, audio, and textual repre-

sentations, several senses are addressed simultaneously, making the content acces-

sible to learners with different learning preferences or impairments.

3.2 Quizzes

After each video, the course contains quizzes as formative assessment. The main

purpose is to provide the learners with direct and instant feedback on the learning

progress. The quizzes use the standard assessment types offered by the MOOC plat-

form, e. g., single- / multiple-choice questions, drop-down lists, drag-and-drop prob-

lems or text input problems. Depending on the answer, the learner gets a positive

feedback or, otherwise, for example hints which previous parts of the course to re-

peat in more detail.

3.4 Interactive exercises

The videos introduce new concepts to the learners and the quizzes test the progress,

which is, however, in general not sufficient to acquire practical competencies

(Alario-Hoyos et al., 2016). Following a rather constructivist approach, we intend

to let the learners experiment and interact with the concepts directly. Considering

that, we include interactive exercises or programming task for all learning steps

throughout the course. Special care was devoted to the selection and development

of those interactive exercises to enable the learners to experiment and interact di-

rectly with the presented concepts. It can be a major obstacle for potential partici-

pants having to install special software (Liyanagunawardena et al., 2014; Piccioni

et al., 2014), which is especially problematic in an online setting without a teacher

who could help in person. We therefore decided to use only purely web-based tools.

There are already many web-based tools for fostering computational thinking and

learning OOP concepts available in the internet. We selected the in our opinion most

suitable tools to support the intended learning goals. Where necessary we adapted

or extended them to meet our needs. All tools are integrated seamlessly into the

learning platform resulting in a smooth user experience.

7

3.5 Programming exercises

While in several introductory CS MOOCs the learners have to install an integrated

development environment (IDE) for writing their first computer programs, we de-

cided to rely on web-based tool also for this purpose (like (Piccioni et al., 2014)).

We chose to use Codeboard  (Estler & Nordio) (among several alternatives, (Derval

et al., 2015; Skoric et al., 2016; Staubitz et al., 2016) because of the usability and

seamless integration into the edX platform using the Learning Tools Interoperability

(LTI) standard.

The programming assignments are graded automatically and the main purpose is

to provide instant feedback to the learner. We therefore implemented tests for each

assignment that make heavy use of the Java reflection functionality. While standard

unit tests would fail with a compile error if, e. g., an attribute is missing or spelled

differently. Reflection makes it possible to determine for a learner’s submission if,

e. g., all attributes and methods are defined with the correct names, types and pa-

rameters. Writing the tests requires more effort than for standard unit tests but can

give more detailed feedback for the learners in case of mistakes.

Additionally we integrated the automatic grading and feedback system JACK

(Striewe & Goedicke, 2013) using the external grader interface of the edX platform.

Apart from static and dynamic tests, JACK also offers the generation and compari-

son of traces and visualization of object structures; however, we do not use this

extended functionality yet.

3.6 Discussion board

The course also provides a discussion forum which is divided into several dis-

cussion boards. The communication among the learners and with the instructors is

supposed to take place entirely in the discussion forum. Besides the default board

for general and organizational issues, we created one separate discussion board for

each course chapter (called chapter discussion board in the following). The idea is

to organize the learners’ discussions, such that it is easier for the learners keep an

overview. In those discussion boards, the learners can ask questions and answer the

questions of others. The course team also tracks the discussions and can intervene

when problems cannot be solved timely by the learning community itself. It is also

possible to vote for popular topics but we did not mention this possibility and nearly

nobody used it.

Additionally we included separate discussion boards for six specific exercises in

which the learners are supposed to upload their solutions to the forum (those boards

are called exercise discussion boards in the following). In the first of those exercises,

the learners are encouraged to introduce themselves to the community giving some

information about their age, where they life etc. In the exercise discussion boards,

the learners are also prompted to give feedback to the contributions of others.

3.7 Final exam

The course contains a final exam at the end that covers topics of the whole course.

The suggested time to work on the exam is 60 minutes; the time limit is, however,

not ensured by technical limitations. The final exam as well as the graded exercises

count for a final score. A minimal score of 50  % is necessary to successfully pass

the course.

3.8 Course syllabus

Computational thinking (CT) as introduced by Wing (Wing, 2006) is a universal

personal ability that can be used in many disciplines. Since the target group of our

course comes from various different fields of study, we incorporated CT as integral

part of the course. CT is on the one hand intended to facilitate learning programming

and on the other hand a sustainable competency that can be used also outside of our

course.

As pointed out in (Hubwieser, 2008), there is a fundamental didactical dilemma

in teaching OOP: On the one hand, modern teaching approaches postulate to teach

in a “real life” context (Cooper & Cunningham, 2010), i. e., to pose authentic prob-

lems to the learners. Therefore, it seems advisable to start with interesting, suffi-

ciently complex tasks that convince the learners that the concepts they have to learn

are helpful in their professional life. However, if we start with such problems, we

might ask too much from the learners, because they will have to learn an enormous

amount of new, partly very difficult concepts at once (Hubwieser, 2008).

Following a strictly objects first approach (Gries, 2008) and similar to the design

of the school subject and an introductory university lecture, we solved this problem

by distributing the learning objectives over the parts of the course that precede the

“serious” programming part. This avoids to confront the learners with too many

unknown concepts when they have to write their first program. Among others, we

suggest to the learners to look at an object as a state machine (Hubwieser, 2008). In

order to realize this in a learner-oriented way, the learners need to be able to under-

stand a simulation program of a typical state machine, e. g., a traffic light system.

Concerning the choice of the examples, we set the emphasis on the relevance for

the everyday life, which leads for instance to banking or domestic appliances.

LOOP consists of the following five chapters:

9

1. Object-oriented modeling

1.1. Objects

1.2. Classes

1.3. Methods and parameters

1.4. Associations

1.5. States of objects

2. Algorithms

2.1. Concept of algorithm

2.2. Structure of algorithms

3. Classes in programming languages

3.1. Class definition 

3.2. Methods

3.3. Creation of objects

4. Object-oriented programming

4.1. Implementing algorithms

4.2. Arrays

5. Associations and references

5.1. Aggregation and references

5.2. Managing references

5.3. Communication of objects

5.4. Sequence charts

A detailed description of the course design and syllabus was published in (Krugel

& Hubwieser, 2018).

4 Methodology and results

We follow a design-based research methodology and in this work we focus on

the assessment of our learning intervention (phase 3 and phase 4 according to

Reeves (2006)). Collecting both quantitative and qualitative data in this case study,

we utilize a mixed-methods approach for the data analysis to gain in-breadth and

in-depth understanding while balancing the weaknesses inherent in the use of each

individual approach. To understand the learner’s perspectives, we collected and an-

alyzed feedback of the course participants. For the analysis, we applied an inductive

qualitative content analysis according to Mayring (2000). In terms of learning pro-

gress, we pursue quantitative methods and conduced a hierarchical cluster analysis

of participants’ scores in the assignments. This calculation is performed using the

programming language R.

In the following, we first inform about the course implementation, our data col-

lection and give some data on the course participants. We then describe the data

analysis with its results. We performed three DBR cycles so far and describe the

adaptations of the course, which were based on the results of our analyses.

4.1 Course implementation

We prepared the online course on the learning platform edX1 and offered it three

times in the summer holidays of 2016, 2017, and 2018. We will refer to a course

run by its year in the following exposition.

Course run 2016 was offered as a small private online course (SPOC) on edX

Edge and was announced internally at our university as a preparation course for CS

basics. The course runs 2017 and 2018 were offered publicly as MOOCs on edX.

For organizational reasons, 2017 actually consisted of two identical and directly

consecutive course runs which we treat as one course run in the following. The

course runs 2017 and 2018 were included in the global edX course catalog in the

category Computer sciences courses and available world-wide. Our university an-

nounced the courses on its official Facebook page and informed all students in CS-

related subjects about the course offerings.

The intended effort of the students is 5 hours per week. Everyone was free to

participate in the courses without any formal or content-specific prerequisites. The

course takes into account different learning preferences and impairments by provid-

ing the learning content as visual (videos, graphics), textual, and audio presenta-

tions. The only requirement was German language proficiency since the course was

offered on German.

Participation was voluntary in all course runs and did not count towards a grade.

In 2016, we issued informal certificates for successful participation (= obtaining at

least 50 % of the possible points in at least 12 of 16 course units). In 2017 and 2018,

edX issued verified certificates for successful participation, which, however, had to

be paid (49 $).

Each course run took five weeks (one week for each chapter) and the targeted

workload of the learners was 5 - 10 hours per week. The communication among the

learners and with the instructors took place entirely in the discussion forum. The

main task of the instructor during the conduction of the course was to monitor the

forum and to react accordingly, e. g., answer questions or fix problems with the

grading system.

4.2 Data collection

We integrated an introductory online questionnaire into the course (called

“course start survey” in the following), in which we asked the participants about

their age, gender, major, and previous programming experience.

In a concluding questionnaire at the end of the course (called “course end survey”

in the following), we asked for positive and negative textual feedback regarding the

1 https://www.edx.org

https://www.edx.org/

11

course; it consists of two text field with the following questions (translated from

German):

1. Positive aspects: Which aspects of the course did you like?

2. Negative aspects: Which problems did you encounter during the course?

Which aspects of the course did you not like? Which suggestions for im-

provements do you have?

The course end survey also asked for the approximate weekly workload that the

learners spent on the course.

To get an even more detailed picture in the course runs 2017 and 2018, we addi-

tionally requested the participants’ perspectives already during the course. We

therefore included the same questions 1 and 2 directly after each chapter, for organ-

izational reasons with one combined text input field for both questions together (this

is called “chapter feedback survey” in the following). We can therefore react more

specifically regarding the current chapter and also earlier (even immediately during

the course run). This chapter feedback also enables us to get responses by those who

do not make it to the end of the course and to assess what they think before actually

dropping out.

We are especially interested in why some learners successfully finish the course

and others do not. We therefore wrote an individualized mail to every course par-

ticipant who did not complete the course (course runs 2017 and 2018). In the mail,

we simply asked for the reason for not finishing the course (this is called “drop-out

survey” in the following, even though not everybody not finishing a course is nec-

essarily an actual drop-out).

Further, all responses to the quizzes and other tasks, as well as all programs sub-

mitted by the participants during the online course were collected. From the post-

ings in the discussion forum even more qualitative data was obtained.

4.3 Participants

The three course runs of LOOP attracted 87  + 2390 + 2520 = 4997 registrations.

The following numbers are always the total of all course runs in which we collected

the respective data if not stated otherwise.

For the course start survey we received 80 + 494 + 1039 = 1613 responses (female:

463, male: 992, diverse: 7, no answer: 151) with a diverse study background (nu-

merous different majors, including Computer Science, Management, Engineering,

Mathematics and many more). The participants come mainly from Germany, but in

total from more than 70 countries. The average age was 23.5 and 315 participants

were less than 20 years old. Regarding programming, 459 participants had no ex-

perience, 673 had basic knowledge, and 300 participants had already written a “big-

ger” program of at least 100 lines of code (no answer: 181 participants).

4.4 Learners’ feedback

To assess the learners’ perspectives, we analyzed all their free text responses.

This reveals how the participants perceived and dealt with the online course. One

goal of this analysis is to gain generalizable insights into the preferences and prob-

lems of learners in programming MOOCs. Another goal is to improve our course

accordingly aiming at a higher satisfaction of the learners and a higher success rate.

Data analysis

We chose to analyze the learners’ utterances of the course end survey, the chapter

feedback and the drop-out survey using qualitative content analysis following the

methodology of Mayring (2000). This allows to categorize the statements which

helps to afterwards group and inspect similar statements. This will help to under-

stand the learners’ perspectives and to prioritize aspects of the course that can be

improved. We are interested in the following three aspects which therefore guided

the categorization:

1. Positive aspects of the course (course end survey and chapter feedback)

2. Negative aspects of the course (course end survey and chapter feedback)

3. Reasons for not finishing the course (drop-out survey)

We abstracted each learners’ statement such that its wording is independent of

our particular course: a learner wrote for example “The drawing exercise took a lot

of effort.” and we abstracted as “high effort”. We furthermore rephrased all abstrac-

tions as statements about the current state of the course: a learner wrote for example

the suggestion “It would be better to include more examples” and we abstracted this

as “too little examples”. Since each learner’s statement could consist of several sen-

tences or even paragraphs, the rephrased versions could consist of multiple abstrac-

tions. We then inductively categorized all abstractions using several iterations over

the data. In those iterations we introduced new categories, refined, and merged ex-

isting categories. We kept track of the category systems maintaining a coding man-

ual with descriptions of the categories. Whenever the category system changed, we

performed another iteration over the corresponding data until reaching a stable state.

The result of this analysis is a classification of the learners’ free text responses

of all course runs into the categories of the three supercategories while each re-

sponse can fall into several categories.

Results for the course end survey

In the course end survey we received 13 + 102 + 191 = 306 answers. The learners

reported their views about the videos and exercises, the level of difficulty, technical

and organizational issues. They furthermore described their individual progress or

13

problems and proposed specific changes, among others. Due to the low number of

responses in 2016, we did not include these responses in our further analysis.

Applying the inductive qualitative content analysis on the course end survey and

the chapter feedback, we encountered 15 categories for the positive aspects and 45

categories for the negative aspects taking all three course runs together. The results

for the course end survey are displayed in Table 1 and Table 2. The tables further

contain for each category a description and the frequency within responses of the

three course runs. Since this is the result from a qualitative analysis, we sorted the

categories alphabetically and not by frequencies.

There are some categories listed with 0 occurrences. They stem from the chapter

feedback because we used the same category system for the positive/negative as-

pects mentioned in the course end survey and the chapter feedback.

Over a third of the participants explicitly reported to enjoy the interactive exer-

cises and many participants also liked the videos, the programming tasks, and the

overall course structure and alignment.

For the negative aspects, many learners reported that they had difficulties solving

the programming tasks. Also the rise in difficulty was seen critically and many par-

ticipants would have liked more comprehensive explanations of the concepts.

There are less categories for the positive aspects compared to the negative as-

pects. However, since we perform a qualitative analysis here, the comparison of

numbers is not necessarily meaningful: For the positive aspects, the participants,

e.g., usually just reported to like the videos, while for the negative aspects, they

explained which aspect about the videos they did not like (which results in several

categories). A quantitative comparison of those numbers can sometimes give a hint,

but has to be interpreted carefully.

2017 2018 Positive aspect Details

(102) (191)

6,9% 3,7% Automatic feedback For quizzes and programming tasks
2,0% 0,0% Contents Selection of course contents

11,8% 9,4% Course structure Variability and alignment of the elements

5,9% 3,7% Discussion board Help by other learners and the course team
6,9% 4,2% Examples Real-world connection, clarity

31,4% 30,4% Exercises Interactivity

5,9% 10,5% Explanations Clarity, understandability
5,9% 3,1% External tools Integration of external tools into the course

1,0% 0,0% Final exam Tasks and alignment of the exam

4,9% 3,1% Flexibility Regarding time and location
3,9% 6,8% Handouts Preparation, layout, downloadable

11,8% 9,9% Level of difficulty Not too easy, not too hard

14,7% 15,7% Programming tasks Variability and alignment of the elements
6,9% 5,2% Quizzes Help by other learners and the course team

16,7% 18,8% Videos Video style, availability

Table 1: Categorization of negative aspects mentioned by the participants in the course end survey.

2017 2018 Negative aspect Details

(102) (191)

0.0 % 2.6 % Automatic feedback The feedback is not helpful
2.0 % 0.5 % Connections unclear Connections between the contents elements are not

clear

2.9 % 1.6 % Content missing Some specific content is missing
3.9 % 2.1 % Deadlines Time-constraints of the course are too strict

1.0 % 0.0 % Discussion board is confusing Keeping an overview and finding relevant posts is

difficult
2.9 % 2.1 % Effort too high Compared to learning outcome

4.9 % 4.7 % Explanation unclear

5.9 % 1.6 % External tools Complicated to use, technical problem with a tool

1.0 % 0.0 % Language problems German not as mother tongue

19.6 % 14.1 % Level of difficulty increase

0.0 % 1.6 % Level of difficulty too high
2.9 % 0.0 % Level of difficulty too low

2.0 % 0.5 % Miscellaneous

2.0 % 0.5 % Motivational problem
2.9 % 5.8 % Obligation to post in forum Prefer to learn alone without interaction

1.0 % 1.0 % Overview handout is missing Fact sheet, language reference etc.

22.5 % 20.4 % Programming too difficult E.g. difficulties debugging programming errors
1.0 % 3.7 % Quizzes Questions or answers unclear, too easy

2.0 % 1.6 % Sample solution is missing Missing or available too late

0.0 % 1.0 % Specific task too difficult Any specific task (except a programming task)
1.0 % 1.6 % Syntax problems

4.9 % 5.2 % Task description unclear

1.0 % 0.5 % Teacher feedback is missing For drawing or programming exercises
0.0 % 6.8 % Technical problems Regarding the learning platform, the videos etc.

11.8 % 7.9 % Too concise Prefer a more extensive explanation

7.8 % 4.7 % Too few examples
2.0 % 2.6 % Too few exercises

1.0 % 2.6 % Too few hints

0.0 % 0.0 % Too few programming tasks
3.9 % 5.2 % Too theoretical Prefer more practical explanations and tasks

7.8 % 7.9 % Video style Too serious, too little enthusiasm etc.

1.0 % 0.5 % Videos too fast
1.0 % 1.6 % Videos too long

0.0 % 0.5 % Videos too short

1.0 % 0,0 % Videos too slow
0.0 % 0,0 % Videos volume too low

0.0 % 0,0 % Weekly exam is missing Prefer to have additional exams in each chapter

Table 2: Categorization of negative aspects mentioned by the participants in the course end survey.

Results for the chapter feedback

In the two investigated course runs, we received 255 + 460 = 715 responses for

the chapter feedback as a total their five chapters. The statements are more specific

regarding particular aspects of the course sections than in the course end survey.

We omit the detailed results for the positive aspects since they mainly reflect the

results from the course end feedback and are not very interesting for adapting the

15

course. The results of the qualitative content analysis for the negative aspects are

shown in Table 3.

Many participants reported that the effort compared to the learning outcome is

too low in Chapter 1; they refer to two specific exercises where the learners are

supposed to draw a graphic (the layout of their room and an object diagram). This

is closely connected to the negative mentioning of embedded tools in Chapter 1.

In Chapter 2, the participants found the content to be too short and too theoretical

in the course run 2017, but not in 2018 where we had added another practical exer-

cise. The learners reported problems with an embedded tool in 2018, which was

fixed by the authors of the external tool during the course run.

2017 2018 Course run

1 2 3 4 5 1 2 3 4 5 Chapter

108 69 39 28 11 171 147 77 44 21 Responses

0 0 0 0 0 0 0 0 0 0 Automatic feedback
1 2 0 0 0 0 0 0 0 0 Connections unclear

0 1 0 0 0 1 0 0 1 1 Content missing

3 0 0 0 0 0 0 0 1 0 Deadlines
2 0 0 0 0 1 0 0 0 0 Discussion board is confusing

12 0 0 0 0 24 2 0 2 1 Effort too high

1 0 2 2 0 3 2 3 4 1 Explanation unclear
17 0 0 0 0 13 23 1 0 1 External tools

0 0 0 0 0 2 0 0 0 0 Language problems

0 0 0 0 0 0 0 0 0 0 Level of difficulty increase
0 0 1 4 1 2 1 1 11 3 Level of difficulty too high

2 0 0 0 0 4 1 0 0 0 Level of difficulty too low

1 0 0 2 0 3 1 1 0 0 Miscellaneous
0 0 0 0 0 2 0 0 0 0 Motivational problem

0 0 0 0 0 1 0 0 0 2 Obligation to post in forum

2 0 0 0 0 3 0 2 0 1 Overview handout is missing
0 0 1 16 8 0 0 2 20 6 Programming too difficult

1 3 3 0 0 6 11 0 0 0 Quizzes

1 3 0 0 0 1 0 0 0 0 Sample solution is missing
0 1 0 0 0 2 12 0 0 0 Specific task too difficult

0 0 0 0 0 1 0 1 1 0 Syntax problems

7 0 9 1 0 5 0 4 0 0 Task description unclear
6 0 0 0 1 0 0 0 0 0 Teacher feedback is missing

6 0 1 1 0 9 8 12 0 0 Technical problems
2 6 0 0 0 5 3 2 1 0 Too concise

0 2 0 0 0 3 0 0 0 0 Too few examples

1 3 1 0 0 1 0 4 0 0 Too few exercises
0 2 0 0 0 0 2 1 0 0 Too few hints

3 1 0 0 1 0 14 1 0 0 Too few programming tasks

0 5 0 0 0 3 1 0 0 1 Too theoretical
0 1 0 0 0 16 1 0 1 0 Video style

0 1 0 0 0 2 0 0 0 0 Videos too fast

0 0 2 2 0 3 1 0 3 0 Videos too long

1 2 0 0 0 0 0 0 0 0 Videos too short

0 0 0 2 0 2 0 0 0 0 Videos too slow

0 0 0 0 0 1 0 0 0 0 Videos volume too low
3 1 0 0 0 1 0 0 0 0 Weekly exam is missing

Table 3: Categorization of negative aspects mentioned by the participants in the chapter feedback.

The first programming exercises start in Chapter 3. However, the problems re-

garding programing tasks are mainly reported in Chapter 4. In this chapter, the tasks

are more complex and obviously a hurdle for learners. This coincides with state-

ments regarding a high difficulty, mainly also in Chapter 4.

Table 3 lists several more aspects mentioned by the learners, some of which were

easy to change in the consecutive course runs, but also some that directly contradict

each other.

Results for the drop-out survey

For the drop-out survey we sent out 1474 + 2270 = 3744 individualized e-mails

to the participants that registered but did not successfully complete the course

(course runs 2017 and 2018). We received 227 + 411 = 638 answers regarding the

reason for that. The qualitative content analysis yielded 22 categories and the fre-

quencies of the categories are displayed in Table 4.

Again we want to note that not everybody not finishing a course is necessarily

an actual drop-out since there are several other possible reasons. By far the most

prevalent reason mentioned was a lack of time (either due to side jobs, travel or

other obligations). Several other participants apparently realized that they were al-

ready familiar with the contents and therefore discontinued the course. Further, both

personal (illness, late registration, private reasons, etc.) as well as course-related

reasons (rise in difficult, language problems, explanations, etc.) were mentioned.

Technical problems hardly appear to be a reason to discontinue with the course.
2017 2018 Reason for not finishing Details

227 411

1 6 Effort too high Especially regarding the learning outcome
3 1 Explanations unclear

5 22 No further need for participation E.g., due to changes of the study major

12 16 No internet connection E.g., due to moving or travel
8 10 Illness

9 14 Motivational problems

4 13 Level of difficulty too high
2 0 Level of difficulty too low

16 26 Level of difficulty increase

1 3 Only have a look From the start no intention to learn actively
5 8 Private reasons

4 12 Programming too difficult

24 32 Contents already known
0 6 Miscellaneous

6 5 Registration too late

6 4 Language problems
3 11 Technical problems E.g., with the learning platform

0 5 Forgotten Registered but did not think of it afterwards

1 4 Video style
141 223 Time constraints Due to jobs, university courses etc.

1 3 Too concise Explanations too concise to understand

0 4 Too theoretical Especially regarding the learning outcome
Table 4: Categorization of reasons to not finish the course mentioned by the participants in the drop-out

survey.

17

4.5 Adaptation of the course

Following the design-based research approach, we used the results to adapt the

teaching, i.e. our online course. For the adaptation, we considered especially the

negative aspects of the course end survey and chapter feedback, but also the positive

aspects and the reasons for not finishing the course. The categorization helps to keep

an overview, to identify and group similar issues, and also to notice contradicting

views. The frequencies of the statements in the categories can also give hints which

aspects are urgent for many learners and which statements are only isolated opinions

of very few.

Some of the problems and suggestions mentioned in the learners’ statements can

be addressed easily while others would require big changes to the course structure.

We applied some of the changes already during the course runs (i.e. in the case of

technical problems or misleading task descriptions) while we changed bigger issues

only after the course runs (i.e. introduce completely new exercises). In the following

we describe the adaptations we made to the course.

In general, we clarified textual explanations, task descriptions and quizzes wher-

ever reported. We did, however, not change any video recordings yet due to the

costs involved.

Since the learners reported problems with an external drawing tool in Chapter 1

of run 2017, we provided alternatives in 2018 and allowed simply draw using paper

and upload a photo of the result. We additionally clarified some task descriptions.

Because the learners found Chapter 2 too short and too theoretical, we added

another practical exercise (A2.2.6) in 2017 and the feedback in 2018 shows that this

is not seen as problem anymore. However, it turned out that the new exercises was

seen as difficult, why we added some hints at critical steps after the course run 2018.

In Chapter 4, many learners had difficulties with the actual programming. We

therefore added a smaller initial programming task (A4.1.5), provided more expla-

nations and modified the existing programming tasks. Additionally, we included a

page giving hints at how to best learn in a self-learning environment like a MOOC

and pointing to supporting offers like the discussion board. This had some positive

results, but still many learners struggle when having to program a non-trivial class

with attributes and methods. After course run 2018 we therefore introduced an ex-

planation of debugging basics, an overview of variable and array instantiation in

Java, as well as a series of 20 step-wise hints for one programming exercise.

Most learners who did not finish the course mentioned time-constraints as the

main reason. We therefore also changed the course organization slightly: In 2017,

the chapters were released on Monday and due the following Monday. In 2018, the

chapters were already released on the Friday before. This made it possible that each

chapter is available on two weekends with a small overlap of the chapters.

We did, of course, not apply all changes proposed by the participants. So far we

focused on changes that are not controversial among the learners and do not require

to change the overall course structure.

4.6 Learners’ communication

Unlike in the pilot course run 2016 (Krugel & Hubwieser, 2017), there were

lively discussions in the discussion boards of course runs 2017 and 2018. At the end

of the five-week courses, the discussion boards of course runs 2017 and 2018 con-

tained 72 + 122 = 194 topics with 197 + 244 = 441 replies. The exercise-specific fo-

rums contained 1068 + 2442 = 3510 topics with 288  + 932 = 1220 replies in total.

This is presumably partly due to our intensified aims at encouraging asking ques-

tions and helping other students. Another reason is certainly the substantially higher

number of participants because discussions take place much easier above a certain

critical mass.

During the course we observed the discussion board daily and reacted accord-

ingly when needed. However, we did not systematically analyze the contents of the

discussions yet.

4.7 Workload

In the course end survey, the learners reported their average weekly workload.

The average was 3.8 hours per week in 2017 and 4.6 hours per week in 2018. This

increase is presumably due to the additional exercises and material. Another reason

might be that more learners reached the later and reportedly more time consuming

chapters of the courses. Some participant’s reported in the discussion forum and

feedback texts to spend more than 15 hours per week on the course, especially when

stuck in programming exercises.

4.8 Learners’ performance

In principle, MOOCS are intended to attract large numbers of participants. In most

cases, they don’t offer any tutoring by human individuals. In consequence, there is

no way of monitoring the atmosphere and the learning behavior of the participants

by personal contact with teaching personal. Thus, it is seems essential to monitor

the behavior of the learners by automatic means to get necessary feedback on par-

ticular difficult content and dropout rates or reasons. Due to the large scale of the

courses, the behavior of some few individuals is not very relevant. Instead, we are

interested in the learning process of larger groups that share certain behavior fea-

tures, e.g. regarding scoring of certain tasks or dropout points, which seems to be a

classical application for statistical cluster analysis.

First, we performed a cluster analysis of the pilot conduction of LOOP in 2016, for

which we calculated the average of the achieved relative scores over each of the 16

19

course sections for each of the 187 participants. The results reflected in a quite in-

structive way, how the performance of large groups of participants developed over

these sections and in which sections a substantial number of them gave up. For the

next course runs in 2017 and 2018, the number of participants increased substan-

tially, which allows us to perform cluster analysis on the level of singles tasks to get

a much more detailed picture of the performance development.

For this purpose, we conducted a hierarchical cluster analysis on the individual

scores of all tasks of the course. In a first step, we cleaned raw score matrices (one

line per individual participant and one column by each task) by removing all lines

that contained exclusively empty values (“not attempted”). In a second step, we

normalized the resulting matrices to an interval scale (from 0.00 to 1.00) by replac-

ing all “not attempted” values by 0 and by dividing all score values by the maximum

score of the respective tasks (columns).

For the clustering, we regarded the columns of this matrix as dimensions. Thus, the

set of all scores of each participant could be interpreted as the definition of a certain

position in a multidimensional space. By this way, the pairwise distance between

the positions of all participants could be calculated in a specific distance matrix.

Looking for the best result, we tried two different distance metrics (Maximum and

Euclidian). Finally, a hierarchical clustering was performed on this distance matrix,

starting with one cluster per person and combining successively more and more

persons to larger clusters according to their relative distance, applying several dif-

ferent clustering strategies (ward.D, Complete, Average and McQuitty, for details

see (Everitt et al., 2001)). The calculation was performed in the statistical program-

ming language R by applying the function hclust.

As hierarchical clustering is a local heuristic strategy, the results have to be in-

spected according their plausibility. For this purpose, we looked for plausible den-

drograms that represented a proper hierarchy. We found that the Euclidean distance

metrics produced the best results in combination with the ward.D algorithm. Fig. 2

shows an exemplary dendrogram for this combination. To find a suitable number of

clusters, we inspected these dendrograms from the top down to a level where we

found as many clusters as possible, but avoiding too small clusters with too small

number of members. We found that the best height to cut would be at 4 branches,

which suggests the following clusters c1, c2, c3, and c4 in course run 2017 and d1,

d2, d3, and d4 in course run 2018 (with the numbers of members in parentheses):

 Course run 2017: c1 (104), c2 (207), c3 (235), and c4 (328)

 Course run 2018: d1 (513), d2 (196), d3 (472), and d4 (469)

Finally, we calculated the average performance over all course tasks for each of the

4 clusters. The results are displayed in Fig. 3 (for course run 2017) and Fig. 4 (for

course run 2018).  Please note that there is a small difference in the task lists between

the runs of 2017 and 2018, because in 2018 two new exercises were added (A2.2.5

and A4.1.5). Exercise A2.2.5 (Maze) has been changed for a more flexible answer

format and is now obviously more difficult. In addition, some other exercises might

be easier due to improved explanations etc.

Fig. 2. Exemplary dendrogram, clustering by Euclidean distance with the ward.D algorithm.

Fig. 3. Average performance of the learner clusters c1, c2, c3, and c4 in the course sections in 2017.

Fig. 4. Average performance of the learner clusters d1, d2, d3, and d4 in the course sections in 2018.

21

 2017 2018

Name Cluster Members Cluster Members

High performers c1 11.9% d2 11.9%

Late droppers c2 23.7% d1 31.1%

Early droppers c3 26.9% d4 28.4%

Low performers c4 37.5% d3 28.6%

Table 5: Clusters of participants in the course runs 2017 and 2018.

Due to its design, our clustering reflects the performance and dropout behavior

of four typical groups that represent many participants each. Unfortunately, the

numbering of the clusters is set arbitrarily by the R packages. To support the com-

parison between the two runs, we introduce new names for the clusters:

1. The “high performers” kept comparably high scores over the whole course

in both runs (c1 and d2).

2. The “late droppers” started with high scores, but dropped starting from

section 4 (c2 and d1).

3. The performance of the “early droppers” dropped already during section 1

(c3 and d4).

4. The “low performers” reached high scores only in a few tasks (1.6.2a,

1.5.2, and 3.2.4a), but performed low in the rest (c4 and d3).

A comparison of the numbers of members of these clusters demonstrates that the

percentage of high performers remained constant. The number of late droppers in-

creased significantly, while the low performers were reduced. This might be inter-

preted as an overall improvement of LOOP.

In the course run 2017, 113 of the 2390 (4.7 %.) registered participants successfully

passed the course. In 2018, this ratio was up to 213 out of 2520 (8.5  %). This is quite

an encouraging result and indicates that the adaptations of the course meet the learn-

ers’ preferences and help with the challenges.

5 Discussion

Using a mixed-methods approach and following a design-based research methodol-

ogy we gained insights into the perspectives of learners in MOOCs, which also

served as basis for adapting the course.

5.1 Lessons learned

1. What are learners’ preferences in self-regulated introductory programming

MOOCs?

Learners reported to like the very clear structure of a MOOC with well-aligned vid-

eos, quizzes, and exercises. Especially many learners mention to enjoy interactive

exercises that let them interact with the concepts directly.

2. What are the main challenges learners face in self-regulated introductory

programming MOOCs?

A major challenge for learners is to handle a high level of difficulty, especially when

the difficulty increases during the course. This is also closely connected to motiva-

tional factors of the learners. If it is not possible to avoid such an increase, it seems

to help the participants if the rise in difficulty is explicitly announced before and

several offers for assistance are clearly pointed out.

Interestingly, some participants explicitly stated to dislike engaging in discussion

boards and prefer to study on their own. This should be kept in mind when designing

a course with collaborative elements, compulsory peer-feedback etc.

It was also confirmed to be important to keep the technical barriers very low

when offering a course which is available worldwide for everybody. Especially nov-

ices cannot be expected to install additional software like an integrated development

environment (IDE) or compilers when sitting alone at their computer. We therefore

integrated only purely web-based tools and a few participants still mentioned some

technical difficulties (even though no severe problems). In the recent course runs,

several participants mentioned they would like to complete the course on their mo-

bile phone or tablet computer. Even though the learning platform already provides

apps for the most popular operating systems, some exercises involving external

tools to not work satisfactorily.

3. What are the main reasons for not finishing introductory programming

MOOCs?

Time-wise flexibility seems to be very important to participants of online

courses. For each chapter in the course run 2018, we allocated 10 days including

two weekends in which the participants could work on the content at their own pace.

However, the vast majority of participants that did not complete the course, still

mentioned time constraints as the main reason. This confirms the main findings by

Eriksson et al. (2017) and Topali et al. (2019).

Our qualitative analysis resulted in 22 categories of reasons for not finishing a

MOOC. The interview study of Zheng et al. (2015) yielded 8 categories and the

interview study of Eriksson et al. (2017) found 11 main factors (grouped into 4

themes). Most of our categories can be mapped to one of the categories of the pre-

23

vious studies and vice-versa. Table 6 shows a comparison of the three category sys-

tems. Our categorization is a bit more fine-granular and also more specific for pro-

gramming MOOCs.

This work Zheng et al. (2015) Eriksson et al. (2017)

Effort too high High workload Utilitarian motivation

Explanations unclear The learner’s perception of the
course design

No further need for participation Learning on Demand Utilitarian motivation

No internet connection Internet access
Illness External factors

Motivational problems Lack of Pressure, No Sense of

Community or Awareness of
Others, Social Influence

Utilitarian motivation, Enjoy-

ment motivation, Study tech-
niques

Level of difficulty too high Challenging Course Content Perceived level of difficulty of

the content
Level of difficulty too low

Level of difficulty increase Challenging Course Content Perceived level of difficulty of

the content
Only have a look Learning on Demand Utilitarian motivation

Private reasons External factors

Programming too difficult Challenging Course Content Perceived level of difficulty of
the content

Contents already known Learning on Demand Mismatch between expectations

and actual content
Miscellaneous

Registration too late Lengthy Course Start-Up

Language problems English proficiency
Technical problems

Forgotten Lengthy Course Start-Up

Video style The learner’s perception of the

course design

Time constraints Lack of Time Lack of time
Too concise Challenging Course Content The learner’s perception of the

course design

Too theoretical Challenging Course Content The learner’s perception of the
course design

Table 6: Comparison of reasons for not finishing a MOOC.

5.2 Limitations

The learners’ feedback of one MOOC is the main basis of our analysis. By its very

nature, feedback is only self-reported and therefore not necessarily objective. For

example when asking for the reasons to not finish the course, participants might

attribute their drop-out rather to time constraints than to their inability to solve the

tasks. Therefore it seems very important to follow a mixed-methods approach also

in the future.

In the course runs, we did not study the effect of single changes to the course in

isolation. This is organizationally not very easy but we also consider running con-

trolled AB-tests in the future.

5.3 Outlook

The enhanced completion rate during the three course runs is presumably mostly

due to our modifications on the course based on the learners’ feedback. This under-

lines the necessity of a participatory approach to the ongoing development of online

courses and teaching in general.

In the future we plan to analyze further data of our rich data collection. We are

currently analyzing students’ solutions of programming exercises of an on-campus

university course as basis for the definition of competencies for OOP and the auto-

matic generation of feedback (Krugel et al., 2020); we plan to extend this analysis

to the programming solutions of our MOOC as well. Furthermore, we will take a

closer look at the discussion board questions which can give insights into, e.g., mis-

conceptions of the learners.

We have just added another chapter to the course: Chapter 6 introduces inher-

itance and polymorphism and thereby rounds off the course to cover the most im-

portant object-oriented concepts. Additionally, we develop and adapt the course fur-

ther based on the learners’ feedback and the quantitative data.

In the long term, we aim to use LOOP as a general tool to analyze learning pro-

cesses in object-oriented programming. The online setting allows to perform exper-

iments and analyses on a scale much larger than in a regular classroom course and,

furthermore, poses new research questions (Settle et al., 2014).

References

Alario-Hoyos, C., Delgado Kloos, C., Estévez-Ayres, I., Fernández-Panadero, C.,

Blasco, J., Pastrana, S., Suárez-Tangil, G., & Villena-Román, J. (2016). Inter-

active activities: The key to learning programming with MOOCs. In European

Stakeholder Summit on experiences and best practices in and around MOOCs

(EMOOCS'16). Books on Demand.

Alonso-Ramos, M., Martin, S., Albert Maria, J., Morinigo, B., Rodriguez, M.,

Castro, M., & Assante, D. (2016). Computer science MOOCs: A methodology

for the recording of videos. In IEEE Global Engineering Education Confer-

ence (EDUCON'16).

Anderson, T., & Shattuck, J. (2012). Design-Based Research. Educational Re-

searcher, 41 (1), 16–25. https://doi.org/10.3102/0013189X11428813

Bajwa, A., Hemberg, E., Bell, A., & O'Reilly, U.‑M. (2019). Student Code Trajec-

tories in an Introductory Programming MOOC. In Unknown (Ed.), Proceed-

ings of the Sixth (2019) ACM Conference on Learning @ Scale - L@S '19

(pp. 1–4). ACM Press. https://doi.org/10.1145/3330430.3333646

25

Cooper, S., & Cunningham, S. (2010). Teaching computer science in context.

ACM Inroads, 1, 5–8. https://doi.org/10.1145/1721933.1721934

Crues, R. W., Bosch, N., Anderson, C. J., Perry, M., Bhat, S., & Shaik, N. (2018).

Who they are and what they want: Understanding the reasons for MOOC en-

rollment. In Proceedings of the 11th International Conference on Educational

Data Mining, EDM 2018, Buffalo, NY, USA, July 15-18, 2018. http://educa-

tionaldatamining.org/files/confer-

ences/EDM2018/papers/EDM2018_paper_121.pdf

Delgado Kloos, C., Munoz-Merino, P. J., Munoz-Organero, M., Alario-Hoyos, C.,

Perez-Sanagustin, M., Parada G., H. A., Ruiperez, J. A., & Luis Sanz, J.

(2014). Experiences of running MOOCs and SPOCs at UC3M. In IEEE Global

Engineering Education Conference (EDUCON'14).

Derval, G., Gego, A., Reinbold, P., Frantzen, B., & van Roy, P. (2015). Automatic

grading of programming exercises in a MOOC using the INGInious platform.

In European Stakeholder Summit on experiences and best practices in and

around MOOCs (EMOOCS'15).

Design-Based Research Collective (2003). Design-Based Research: An Emerging

Paradigm for Educational Inquiry. Educational Researcher, 32 (1), 5–8.

https://doi.org/10.3102/0013189X032001005

Eriksson, T., Adawi, T., & Stöhr, C. (2017). “Time is the bottleneck”: a qualitative

study exploring why learners drop out of MOOCs. Journal of Computing in

Higher Education, 29 (1), 133–146. https://doi.org/10.1007/s12528-016-9127-

8

Estler, C., & Nordio, M. Codeboard. http://codeboard.io/

Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster analysis. Arnold.

Falkner, K., Falkner, N., Szabo, C., & Vivian, R. (2016). Applying validated peda-

gogy to MOOCs. In ACM Conference on Innovation and Technology in Com-

puter Science Education (ITiCSE'16) (pp. 326–331). ACM.

https://doi.org/10.1145/2899415.2899429

Fitzpatrick, J. M., Lédeczi, Á., Narasimham, G., Lafferty, L., Labrie, R.,

Mielke, P. T., Kumar, A., & Brady, K. A. (2017). Lessons Learned in the De-

sign and Delivery of an Introductory Programming MOOC. In M. E. Casper-

sen, S. H. Edwards, T. Barnes, & D. D. Garcia (Eds.), Proceedings of the 2017

ACM SIGCSE Technical Symposium on Computer Science Education -

SIGCSE '17 (pp. 219–224). ACM Press.

https://doi.org/10.1145/3017680.3017730

Garcia, F., Diaz, G., Tawfik, M., Martin, S., Sancristobal, E., & Castro, M. (2014).

A practice-based MOOC for learning electronics. In IEEE Global Engineering

Education Conference (EDUCON'14).

Geldreich, K., Simon, A., & Hubwieser, P. (2019). Design-Based Research als

Ansatz zur Einführung von Algorithmik und Programmierung an bayerischen

Grundschulen. MedienPädagogik: Zeitschrift Für Theorie Und Praxis Der Me-

dienbildung, 33 (Medienpäda).

https://doi.org/10.21240/mpaed/33/2019.02.15.X

Gries, D. (2008). A principled approach to teaching OO first. ACM SIGCSE Bulle-

tin, 40 (1), 31. https://doi.org/10.1145/1352322.1352149

Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student en-

gagement. In M. Sahami, A. Fox, M. A. Hearst, & M. T. H. Chi (Eds.), 1st

ACM Conference on Learning@Scale (L@S'14) (pp. 41–50). ACM.

https://doi.org/10.1145/2556325.2566239

Hicken, A. (2018). 2019 eLearning Hype Curve Predictions. https://webcourse-

works.com/elearning-predictions-hype-curve/

Hubwieser, P. (2008). Analysis of learning objectives in object oriented program-

ming. In R. T. Mittermeir & M. M. Syslo (Eds.), Lecture notes in computer

science, Informatics Education - Supporting Computational Thinking, 3rd In-

ternational Conference on Informatics in Secondary Schools - Evolution and

Perspectives (ISSEP'08) (pp. 142–150). Springer. https://doi.org/10.1007/978-

3-540-69924-8_13

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magen-

heim, J., Pal, Y., Jackova, J., & Jasute, E. (2015). A global snapshot of com-

puter science education in K-12 schools. In ITiCSE Working Group Reports

(pp. 65–83). ACM. https://doi.org/10.1145/2858796.2858799

Krugel, J., & Hubwieser, P. (2017). Computational thinking as springboard for

learning object-oriented programming in an interactive MOOC. In 2017 IEEE

Global Engineering Education Conference (EDUCON) (pp. 1709–1712).

IEEE. https://doi.org/10.1109/EDUCON.2017.7943079

Krugel, J., & Hubwieser, P. (2018). Strictly Objects First: A Multipurpose Course

on Computational Thinking. In M. S. Khine (Ed.), Computational Thinking in

the STEM Disciplines (Vol. 49, pp. 73–98). Springer International Publishing.

https://doi.org/10.1007/978-3-319-93566-9_5

Krugel, J., Hubwieser, P., Goedicke, M., Striewe, M., Talbot, M., Olbricht, C.,

Schypula, M., & Zettler, S. (2020). Automated Measurement of Competencies

and Generation of Feedback in Object-Oriented Programming Courses (pre-

print). In 2020 IEEE Global Engineering Education Conference (EDUCON).

IEEE.

Kurhila, J., & Vihavainen, A. (2015). A purposeful MOOC to alleviate insuffi-

cient CS education in Finnish schools. ACM Transactions on Computing Edu-

cation, 15 (2), 1–18. https://doi.org/10.1145/2716314

27

Liyanagunawardena, T. R., Lundqvist, K. O., Micallef, L., & Williams, S. A.

(2014). Teaching programming to beginners in a massive open online course.

In Building Communities of Open Practice (OER'14).

Luik, P., Feklistova, L., Lepp, M., Tõnisson, E., Suviste, R., Gaiduk, M.,

Säde, M., & Palts, T. (2019). Participants and completers in programming

MOOCs. Education and Information Technologies, 24 (6), 3689–3706.

https://doi.org/10.1007/s10639-019-09954-8

Luik, P., Suviste, R., Lepp, M., Palts, T., Tõnisson, E., Säde, M., & Papli, K.

(2019). What motivates enrolment in programming MOOCs? British Journal

of Educational Technology, 50 (1), 153–165.

https://doi.org/10.1111/bjet.12600

Mayring, P. (2000). Qulitative Content Analysis. Forum Qualitative Sozi-

alforschung / Forum: Qualitative Social Research, 1 (2), Article 20. http://nbn-

resolving.de/urn:nbn:de:0114-fqs0002204

Moreno-Marcos, P. M., Muñoz-Merino, P. J., Maldonado-Mahauad, J., Pérez-Sa-

nagustín, M., Alario-Hoyos, C., & Delgado Kloos, C. (2020). Temporal analy-

sis for dropout prediction using self-regulated learning strategies in self-paced

MOOCs. Computers & Education, 145, 103728.

https://doi.org/10.1016/j.compedu.2019.103728

Papavlasopoulou, S., Giannakos, M. N., & Jaccheri, L. (2019). Exploring chil-

dren's learning experience in constructionism-based coding activities through

design-based research. Computers in Human Behavior, 99, 415–427.

https://doi.org/10.1016/j.chb.2019.01.008

Piccioni, M., Estler, C., & Meyer, B. (2014). SPOC-supported introduction to pro-

gramming. In Å. Cajander, M. Daniels, T. Clear, & A. Pears (Chairs), Innova-

tion & Technology in Computer Science Education (ITiCSE'14), Uppsala,

Sweden.

Plomp, T. (2007). Educational Design Research: An Introduction. An Introduction

to Educational Design Research, 9–35.

Reeves, T. C. (2006). Design research from a technology perspective. In J. van

den Akker (Ed.), Educational design research (pp. 52–66). Routledge.

Settle, A., Vihavainen, A., & Miller, C. S. (2014). Research directions for teaching

programming online. In Proceedings of the International Conference on Fron-

tiers in Education Computer Science and Computer Engineering (FECS'14).

Skoric, I., Pein, B., & Orehovacki, T. (2016). Selecting the most appropriate web

IDE for learning programming using AHP. In 39th International Convention

on Information and Communication Technology, Electronics and Microelec-

tronics (MIPRO'16) (pp. 877–882). IEEE.

https://doi.org/10.1109/MIPRO.2016.7522263

Staubitz, T., Klement, H., Teusner, R., Renz, J., & Meinel, C. (2016). CodeOcean

- A versatile platform for practical programming excercises in online environ-

ments. In IEEE Global Engineering Education Conference (EDUCON'16).

Striewe, M., & Goedicke, M. (2013). JACK revisited: Scaling up in multiple di-

mensions. In Lecture notes in computer science, 8th European Conference, on

Technology Enhanced Learning (EC-TEL'13): Scaling up Learning for Sus-

tained Impact (pp. 635–636). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-40814-4_88

Topali, P., Ortega-Arranz, A., Er, E., Martínez-Monés, A., Villagrá-Sobrino, S. L.,

& Dimitriadis, Y. (2019). Exploring the Problems Experienced by Learners in

a MOOC Implementing Active Learning Pedagogies. In M. Calise, C. Delgado

Kloos, J. Reich, J. A. Ruiperez-Valiente, & M. Wirsing (Eds.), Lecture notes

in computer science. Digital Education: At the MOOC Crossroads Where the

Interests of Academia and Business Converge (Vol. 11475, pp. 81–90). Sprin-

ger International Publishing. https://doi.org/10.1007/978-3-030-19875-6_10

Vihavainen, A., Luukkainen, M., & Kurhila, J. (2012). Multi-faceted support for

MOOC in programming. In R. Connolly (Ed.), ACM Digital Library, Proceed-

ings of the 13th Annual Conference on Information Technology Education

(p. 171). ACM. https://doi.org/10.1145/2380552.2380603

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49 (3),

33–35. https://doi.org/10.1145/1118178.1118215

Zheng, S., Rosson, M. B., Shih, P. C., & Carroll, J. M. (2015). Understanding Stu-

dent Motivation, Behaviors and Perceptions in MOOCs. In D. Cosley, A.

Forte, L. Ciolfi, & D. McDonald (Eds.), Proceedings of the 18th ACM Confer-

ence on Computer Supported Cooperative Work & Social Computing - CSCW

'15 (pp. 1882–1895). ACM Press. https://doi.org/10.1145/2675133.2675217

Acknowledgements

This work was partially supported by the Dr.-Ing. Leonhard Lorenz-Stiftung

(Grant No. 949/17). We thank Alexandra Funke and Marc Berges for developing

parts of the course. We would furthermore like to thank all course participants for

taking the time to provide their valuable feedback and the reviewers for the com-

ments that helped to improve the exposition.

