Automated Measurement of Competencies and
Generation of Feedback in Object-Oriented
Programming Courses

Johannes Krugel*, Peter Hubwieser*, Michael Goedickef, Michael Striewe!, Mike Talbot*,
Christoph Olbricht, Melanie Schypula’, and Simon Zettler*
*School of Education, Technical University of Munich, Munich, Germany
Email: krugel@tum.de, peter.hubwieser@tum.de, mike.talbot@tum.de, simon.zettler@tum.de
t Paluno — The Ruhr Institute for Software Technology, University of Duisburg-Essen, Essen, Germany
Email: {michael.goedicke, michael.striewe, christoph.olbricht, melanie.schypula} @paluno.uni-due.de

Abstract—To overcome the shortage of computer specialists,
there is an increased need for correspondent study and training
offers, in particular for learning programming. The automated
assessment of solutions to programming tasks could relieve
teachers of time-consuming corrections and provide individual
feedback even in online courses without any personal teacher. The
e-assessment system JACK has been successfully applied for more
than 12 years up to now, e.g., in a CS1 lecture. However, there are
only few solid research results on competencies and competence
models for object-oriented programming (OOP), which could be
used as a foundation for high-quality feedback.

In a joint research project of research groups at two uni-
versities, we aim to empirically define competencies for OOP
using a mixed-methods approach. In a first step, we performed
a qualitative content analysis of source code (sample solutions
and students’ solutions) and as a result identified a set of
suitable competency components that forms the core of further
investigations. Semi-structured interviews with learners will be
used to identify difficulties and misconceptions of the learners and
to adapt the set of competency components. Based on that we
will use Item Response Theory (IRT) to develop an automatically
evaluable test instrument for the implementation of abstract
data types. We will further develop empirically founded and
competency-based feedback that can be used in e-assessment
systems and MOOCs.

Index Terms—computer science education, object oriented
programming, educational technology, electronic learning

I. INTRODUCTION

To overcome the current shortage of computer specialists,
there is an increased need for correspondent study and training
offers, in particular for learning programming. An analogous
lack of sufficiently competent teaching staff, however, limits
the supply of face-to-face courses. The automated assessment
of solutions to programming tasks could relieve teachers of
time-consuming corrections in order to increase the capacities
of classroom teaching. At the same time, it can provide
complementary online services without any human tutoring,
in particular Massive Open Online Courses (MOOC:s).

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — 412374068

The working group “Specification of Software Systems” at
University of Duisburg-Essen has developed and maintained
the e-assessment system JACK for more than 12 years up
to now [1]. It has been successfully applied for automated
assessment e. g. in the context of the CS1 lecture given by the
working group at that university. During the first 12 years of
service, approximately 93,000 solutions of attestations as well
as approximately 133,000 solutions of preparatory practice
tasks were automatically graded and provided with feedback.

In order to support the intended learning processes, feed-
back should address competency deficits, rather than simply
list failed test cases or provide correct solutions. However,
computer science education research has so far lacked solid
research results on competencies and competence models for
programming, which could be used as a foundation for the
development of such high-quality feedback. Furthermore, the
research on errors and misconceptions in programming is
rather inconsistent, incomplete and hardly illuminated from
the competency-oriented point of view.

The research group for computer science education at
the Technical University of Munich is conducting intensive
research on these fields. In addition, it has created a MOOC
called LOOP for learning object-oriented programming on
the edX platform [2, 3], which was attended by more than
7000 students up to now. The JACK system mentioned above
was already used in the MOOC for real-time evaluation and
feedback generation on the students’ solutions of exemplary
programming tasks.

Since 2015, both research groups combine their experience
and expertise, aiming to link fundamental research on e-
assessment with the extensive research on computer science
competencies in order to address the research gaps mentioned
above. Our collaboration has already produced relevant results.
We were able to identify several potential competencies that
are required to implement and operate 1- and 2- dim arrays,
linked lists, and binary trees (see [4]). In recognition of
these preliminary results, the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) has agreed to
fund our collaboration project AKoFOOP, which links areas

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Johannes
Textfeld
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

of research in computer science and its didactics. The project
started in April 2019 and will be terminated in March 2021. E-
assessment systems enable surveys with large case numbers,
which are necessary for our competency analyses based on
the Item-Response Theory (see e.g. [5]). Our project aims to
achieve the following main goals, using and improving the
JACK system:

1) Empirically founded definition and structural analysis
of competencies for OOP, in particular in the field of
abstract data types (e.g. array, list, tree, graph),

2) Development and piloting of an automatically evaluable
test instrument for the implementation of abstract data
types,

3) Exploring the possibilities and impact of competency-
based feedback in e-assessment systems and MOOC:s.

In this paper, we first describe the theoretical background

and related literature in this field (Section II). To give the
context for our research, we describe the course under inves-
tigation and the data collection using the e-assessment system
JACK (Section III). We present our mixed-methods-based
approach and in particular the qualitative content analysis of
source code that we used to identify possible components
of competencies (Section V). We also describe the further
project plan including the analysis of students solutions, semi-
structured interviews, the measurement of possible competen-
cies using Item Response Theory (IRT) and the adaption of
the automated feedback (Section VI).

II. THEORETICAL BACKGROUND AND RELATED WORK

We start by defining competencies and give an overview
of competence models in computer science. Afterwards we
discuss related literature on errors and misconceptions for
OOP and the automated assessment of programming solutions.
We furthermore describe the IRT which forms the basis for the
measurement of competencies.

A. Competencies

In the context of this project, we denote by competency
a context-specific cognitive performance disposition in the
sense of Weinert [6, p. 27], who defined competencies as “the
cognitive abilities and skills possessed by or able to be learned
by individuals that enable them to solve particular problems,
as well as the motivational, volitional and social readiness
and capacity to use the solutions successfully and responsibly
in variable situations.”

To define competencies in our project, we make use of
Schott and Azizi Ghanbari [7, p. 15]: “A competence consists
of certain amounts of tasks that can be carried out if you have
the competence.” In this sense, we can consider certain sets
of “suitable” tasks as representations of a specific competency.
Of course, there are certain conditions for this, in particular a
sufficient psychometric homogeneity of this set of tasks, which
means that for each set the probability that an individual is able
to solve these tasks depends essentially only on the level of
the respective competency that is defined by this set.

Within the framework of this project we are particularly
interested in the internal structure of such competencies. The
partial capabilities whose mastery is necessary, but not suffi-
cient for having the competency, will be called competency
components in the following (similar to item demands as
described by Hartig, Klieme, and Leutner [8]).

B. Competence Models for Computer Science

Instead of an orientation at the term competency, the works
of the international computer science education communities
are still dominated by the terms knowledge and skills. Cor-
respondingly, very few solid research results on empirically
founded competencies or models for computer science can
be found at the international level so far. For our project,
competence structure models and competence level models in
the sense of [9, p. 6-7] are of particular importance.

Some research in this direction has been carried out within
the framework of the MoKoM project. This resulted in a
first empirically and theoretically based competence structure
model for two sub-areas of computer science (modelling and
system comprehension) [10] as well as a test instrument for
them. It turned out, however, that the dimensionality of the
measured competencies was not sufficiently clear [11]. Above
all, the model turned out to be far too coarsely granular
in the area of OOP, which is relevant for us. The MoKoM
model contains only a few competencies in this respect. For
this reason, there are currently no sufficiently detailed and
empirically founded competence structure models specifically
for recording and modelling programming competencies, even
though individual further attempts have already been made to
do so, e. g. [12, 13].

Based on the above competency definition, Miihling, Hub-
wieser, and Berges [14] examined the potential cognitive facets
by analyzing the structures from declarative knowledge to
OOP through surveys of concept maps [14]. The similarities
in the knowledge structures of first-year students with very
different computer science education resulted in the subject-
specific sub-dimensions of a first proposal for a competence
model for OOP, which was developed on the basis of an
extensive literature study, also on other subjects, as well as
various additional qualitative data [15, 16]. The result are
described in [17]; it contains among others the following sub-
dimensions which are particularly relevant for our project:

1. OOP knowledge and skills:

1.1 Data structure (graph, tree, array),
1.2 Class & object structure (object, attribute, association),
1.3 Algorithmic structure (loops, conditional statement).

C. Errors and Misconceptions

We expect further indications of the internal structure of
our competencies by the analysis of the errors or flaws found
in the student solutions of the tasks. These deficits might be
caused by competency deficits, individual misconceptions as
well as by general learning barriers.

There are a number of publications on the study of errors
and misconceptions in programming, see for example [18, 19].
Robins et al. also provide a literature overview of learning and
teaching programming [20]. They also looked into the question
of what specific deficits can be identified in ineffective pro-
gramming beginners. Ragonis and Ben-Ari [21] performed a
mixed-methods analysis and identified a set of misconceptions
and difficulties when learning object-oriented programming.
Sirkid observes new programmers looking for hints which
programming concepts are misunderstood by learners and lead
to problems when learning a programming language. He sum-
marized these concepts into misconceptions and divided them
into five categories (see also [22], [23, p. 11]). Vahrenhold and
Paul [24] develop test items for OOP focusing specifically on
algorithms and data structures. Caceffo et al. [25, 26] recently
developed a concept inventory for OOP including an overview
of misconceptions in Java.

Zehetmeier et al. [27] made a first connection between mis-
conceptions and competencies, proposing a classification of
the relevant cognitive processes on the basis of the taxonomy
of Anderson & Krathwohl [28]. Each error class was assigned
to missing “competencies”. However, the error categories
are very general and the competencies are not sufficiently
theoretically founded, for example by classification into a
competence structure model.

Programming errors can also point to learning barriers,
which the Danish learning theorist Knud Illeris divided into the
areas of fail learning, defence against learning, ambivalence
and resistance against learning [29]. We will also use this
taxonomy as a starting point for our categorization.

D. Automated Assessment and Feedback

Due to high numbers of participants in introductory courses,
many universities use e-assessment systems for formative
or summative assessment. For the subject of programming
exercises, a wide range of e-assessment systems exists that
detect errors by executing test cases and analyzing source
code [30, 31]. In general, automated systems perform similarly
well compared to human graders regarding scoring and the
generation of feedback [32]. However, a lot of research is
related to direct error feedback with ambivalent results: On
the one hand, fine-grained feedback and grading schemes
have been proven to be effective [33], but on the other hand
detailed syntax error messages appear to be ineffectual [34].
There is also research on additional aspects like assessing
code quality and style [35, 36] or estimating difficulty of
exercises through the analysis of large amounts of solution
data [37], while explicit research on competency measurement
for programming through automated assessment is rare.

E. Measurement of Competencies / Item Response Theory

According to Classical Test Theory (CTT), the construct
of interest (e.g. student abilities) is considered to be measured
directly by item scores, although this is considered to be error-
prone. It is obvious that this straight-forward approach is not

suitable for measuring such complex constructs as compe-
tencies. In contrast, the Item Response Theory (IRT) treats
the constructs of interest as latent psychometric constructs
that cannot be measured directly. Yet, the probability X; j
of a correct answer of person ¢ for item k& depends on those
constructs in a certain way:

P(X’i,k =1 | 62’76/6) = f((—)zaﬂk) (1)

where O, is the parameter of person 4, representing the
manifestation of the psychometric construct, /3 the parameter
of item k, representing its difficulty, and f(©;, ;) a function
that is determined by the psychometric model (e.g. the Rasch
Model (RM), see below) that is assumed to fit the observations.
In most cases these parameters have to be estimated by
numeric calculations. Depending on the assumptions about
the structure of the psychometric constructs that are to be
measured, several different models may be considered, e.g.
unidimensional models that cover only one single latent vari-
able or alternatively multidimensional models. One of the sim-
plest and most widely used ones is the basic unidimensional
(monofactorial) RM with one parameter (1F1P) :

0; —
P(Xig =105 i) = - ixf}fp@» %) v

The graph of such a function called Item Characteristic
Curve (ICC) and S-shaped (see below in Figure 1). Provided
that this model is applicable, some convenient simplifications
can be made. For example, the sum over the scores of all
individual items is a sufficient statistics, which means that
the (estimated) person parameter depends only on the total
number of correct answers of this person. It does not matter,
which questions the person had responded to correctly. Yet,
this model is applicable only if the ICCs have (at least nearly)
the same slope. This slope is represented by an additional
discrimination parameter J; in the 2-parametric RM (1F2P):

B _ ~ exp(0x(©; — Br))
P(Xi’k; =1 | @wﬁk) - 1 —|—6Xp(5k(®z — Bk)) (3)

In the case that there is more than one psychometric
construct to be measured, the multidimensional RM must be
used [17]. In this case the probability of getting item ¢ right
is determined by the sum of all abilities that are required for
this task [16]. In all those cases, three general preconditions
have to be met for the application of the RMs:

1) Homogeneity of items: all items are measuring the same
psychometric construct.

2) Local stochastic independence: the psychometric con-
struct is the only coupling factor between items.

3) Specific objectivity: for all samples from the population,
the item parameters are independent of the specific
sample; the same holds for all samples of questions and
person parameters.

III. COURSE CONTEXT AND DATA COLLECTION

For the bachelor degree programs “Applied Computer
Science” and “Business Informatics” at the University of
Duisburg-Essen, the course “Computer Science 17 (CS1) is
mandatory in the first term. In CS1 the students acquire the
knowledge and skill of basic programming. The lecturer and
the teaching staff offer a wide range of learning opportunities
for the students including the lectures, recitation sessions, con-
sultation hours, exercises, and mini-projects. Small exams (so
called attestations) are held every two weeks. The following
subsections describe those course elements, the differences
between the course runs and the data extraction.

A. Content and Organization of the Course

The course includes two lectures and one recitation session
held by the lecturer or graduate teaching assistants per week.
Each lecture and recitation session takes 90 minutes and the
term has 14 weeks. The topics covered in CS1 are:

e Weeks 1&2: “Java crash course” enabling students to
write first small Java programs without digging into
conceptual details

o Weeks 3 & 4: Classes, objects, attributes, variables, prim-
itive data types and control structures

e Weeks 5 & 6: Arrays and lists

o Weeks 7 & 8: Trees and recursion

o Weeks 9 & 10: Inheritance and interfaces

o Weeks 11 & 12: Generics and exceptions

e Weeks 13 & 14: Lambda expressions and graphs

An optional 2 hours consultation session every weekday
is offered by undergraduate teaching assistants to support the
students on programming with Java. The consultation session
is held in a computer pool, where terminals are provided
for the students to work on. The students may ask questions
about every aspect of the course. In case a question cannot be
answered by the undergraduate teaching assistants, they inform
a graduate teaching assistant, who will help to solve the issue.

Throughout the term, more than 80 small exercise assign-
ments are provided in JACK. Working on these exercises is not
mandatory, but strongly recommended to the students. Some
of these exercises are discussed in detail in the recitation
sessions. Each exercise is associated with several test cases
within JACK. The system evaluates the solutions based on
the test cases and additional static code checks and provides
corresponding feedback to every submission. The students
can submit a solution and receive immediate feedback, that
consists of textual messages (a list of failed test cases and
static code checks) and a result score in the range from 0 to
100.

Beside these small exercises, a larger exercise called mini-
project (MP) is provided every two weeks in JACK. The
mini-project is a mandatory assignment the students must
solve in about a week’s time. Each mini-project addresses
a specific subject area and is split into five to ten subtasks
of increasing difficulty. The mini-project aims to supply a
comprehensive overview of the subject area. It offers the

TABLE I
MINI-PROJECT (MP) AND ATTESTATION (AT) TASKS
Task & subject Subtasks
MPO: training Implement simple methods with simple
datatypes
ATO: training Implement simple methods with simple
datatypes

MP1: one- and two-
dimensional arrays

Implement constructor, add single value to ar-
ray, add array to existing array, get the minimum
value in array, get all values above threshold in
array, scalar multiplication of matrix, add two
matrices, get column of matrix, transpose matrix

AT1: one- and two-
dimensional arrays

Get maximum value in array, subtract two ma-
trices

MP2: singly linked
lists

Implement constructor, append element, get ele-
ment at position, count elements, sum up values
of attribute over all elements, change values of
attribute in a specific way over all elements,
insert element at position, remove element from
list, split list at position, reverse order of list
elements

AT2: singly linked
lists

Mark specific elements in list, remove marked
elements from list

MP3:
over tree

recursion

Insert element, find element, count all elements,
find all elements with attribute value and save to
array, change element without changing order,
delete element, change element and update tree
accordingly

AT3: recursion over
tree

Insert element in binary tree, return array with
tree elements in preorder

MP4: inheritance
and interfaces

Inherit from class, implement constructor, over-
load method, override method

AT4: inheritance
and interfaces

Inherit from class, implement method in parent,
override method in child

MP5: generic list
and map with cus-
tom comparator

Implement constructor to initialize calendar ob-
ject, iterate over generic map, insert and get val-
ues from map, implement custom comparator,

sort generic list with created comparator, insert
element, insert list of elements, get all elements,
get specific elements, get specific elements in
order and count elements in generic list

Add element to generic list, add element at
position to generic list, add values to map,
search for key in map, replace value of all key-
value-pairs in map

ATS5: generic list
and map with cus-
tom comparator

students a way to work on a coherent set of tasks, with the
intent to provide a project-like environment contrary to the
small and isolated exercises mentioned above. The students
can submit any number of solutions to be evaluated by JACK.
The system provides extensive feedback, so that the students
can improve their solution with each submission. In general,
each mini-project is designed to prepare the students for the
corresponding following attestation. It is mandatory to make
at least one submission (regardless of the score achieved) for
the corresponding mini-project to take part in the attestation.

Finally, attestations (AT) are held every two weeks during
the term, for a total of five attestations. These attestations are
small admission exams, in which students can earn a maximum
of 100 points each. Students are only allowed to take the end
of term exam, if they reach a total score of at least 330 points
in the attestations. In an attestation, students solve a given
task within 45 minutes in a computer pool under exam condi-
tions. Students must use Eclipse as an integrated development
environment (IDE) and have no access to the internet. The

TABLE II
NUMBER OF STUDENTS AND SUBMISSIONS PER TERM FOR MINI-PROJECTS

Number of students Number of submissions
No. and variant 2015/16 | 2017/18 | 2018/19 | Total | 2015/16 | 2017/18 | 2018/19 Total
MPO (variant 1) 669 669 2413 2413
MPO (variant 2) 477 477 921 921
MPO (variant 3) 479 479 874 874
MP1 580 663 662 1905 2362 2142 2235 6739
MP2 483 579 607 1669 3643 3105 4655 | 11403
MP3 (old version) 399 434 833 1630 1794 3424
MP3 (new version) 496 496 3756 3756
MP4 316 334 381 1031 1090 955 1482 3527
MP5 260 248 311 819 1005 1070 1463 3538

students may submit several solutions and the number of points
is calculated from the best submitted solution. An additional
attestation that does not count for the total score is offered
early in the term so that students can make themselves familiar
with these special conditions. Since the largest computer pool
of the university can only be used by about 200 students at
the same time, up to four attestations sessions are offered
and the attestation tasks vary slightly between these sessions
to avoid exam fraud. The tasks are similar in difficulty and
workload to single subtasks of the corresponding mini-project.
A comprehensive overview for each subtask of each mini-
project and the corresponding attestation tasks is presented in
Table I. Submitted solutions will be evaluated by JACK after
the attestation is finished. Scores and feedback are available to
the students in the following week. Students may review their
submitted solutions, scores and feedback under the supervision
of an undergraduate teaching assistant in any consultation
session. Attestations and mini-projects are a way of ensuring
that students have to work continually on their programming
skills.

B. Differences Between the Course Runs

Relevant for our project are the course runs in winter terms
2015/16, 2017/18, and 2018/19 as well as future course runs
until 2020/21. We ignore the run in winter term 2016/17,
since the course was held by a different lecturer, who made
large deviations from the course structure and attestation topics
discussed above. Besides that, there were also some other
notable changes between the three terms and there will be
others for future terms.

All attestation tasks were refurbished or replaced by new
ones before winter term 2017/18 without changing the main
topics of each attestation. In winter term 2018/19, the tasks
for mini-project 3 were also replaced, because the previous
one was perceived as too difficult for the students. Tasks for
mini-project 0 (as a preparation to the additional, non-graded
attestation mentioned above) changed every term.

For the future starting from winter term 2019/20, the “Java
crash course” will be turned into a regular part of the lecture
but cover less Java constructs and more conceptual details on
variables, primitive data types, control structures and arrays.
Week three and four can then be reserved for object-oriented

concepts and lists. These changes will actually have no effect
on the topics of mini-projects and attestations.

C. Usage Figures

Table II provides an overview on the number of submitting
student and the total number of submissions per term for the
mini-projects. The figures for the submissions of the attesta-
tions are very similar. The drop-out of students throughout
each term is within the usual margins for that course. It is due
to the fact that students who already gathered enough points
to be admitted for the final exam tend to waive participation
in further attestations. Similarly, students who cannot gather
enough points in the remaining attestations usually tend to quit
the course for that term and make another try in the next term.

Notably, the average number of submissions per student
varies from term to term (e. g. between 3.23 and 4.07 for MP1
or between 5.36 and 7.67 for MP2). There is no obvious reason
for that, i. e. students did not receive different instructions on
whether to make more or less submissions in different terms.

D. Data Extraction and Preparation

In order to allow for easier processing and analysis within
the project, all submissions to the JACK system have been
exported to a unified file system structure. Every year and ex-
ercise (including mini-projects and attestations) is represented
as a separate folder within that structure. Each of these folders
contains separate folders for each student and in them are
separate folders for each submission of that student. Hence,
each individual solution can be addressed by a unique path
as "year/exercise-id/student-id/submission-no/”. These unique
folders contain the submitted source code files and a text file
containing all automated feedback produced by JACK on that
submission. The student folders use pseudonyms as ids, so that
submissions from different exercises or years belonging to the
same person can be identified without actually identifying that
person.

As a first preprocessing step, so-called ”sequencing tables”
have been produced for each exercise. Each line in these tables
represents one submission. Each column represents either a
test case or a sub-task. A ”1” in a cell indicates that no
negative feedback has been generated for that test case or
sub-task in the respective submission. If there was feedback,

1.0

Probability
00 02 04 06 08

Ability

Fig. 1. Acceptable 2-parameter ICC of a 4-combination in MP1.

the corresponding cell contains a ’0”. There is an “n-to-one”-
mapping from feedback messages to test cases and another
”n-to-one”’-mapping from test cases to sub-tasks. Hence, one
test case can fail with several different error messages and
the correctness of a solution with respect to a sub-task can
be checked by several test cases. The sequencing tables are
produced automatically based on these mappings: The list of
feedback for each submission is inspected and each feedback
message is looked up in the mapping. The cells for the
corresponding test cases and sub-tasks are set to 07, while
all other cells for that submission are set to ”1”. Note that
we do not use the score displayed to the students (a value in
the range 0 to 100) in this study, as each exercise can have
individual rules on how to calculate the score based on the
outcome of the test cases.

IV. PRELIMINARY RESULTS

In preparatory work for our project application [4], we had
already analyzed the MPs in the course run of 2015/16 (the
MPs in 2015/16 were numbered differently; we changed the
numbering here to unify the exposition). We found several
shorter item combinations that seemed to have acceptable
variations in the discrimination parameters ¢ (see Figure 1).

The “best” item combination regarding its length, the vari-
ation of the discrimination parameter and the model fit was
one of the two combinations of 5 items of MP3 (see Figure 2),
called MP3-CS5 in the following text. The only flaw of MP3-C5
was that three items A4, A5 and A6 have nearly the same item
difficulty, causing a coincidence of their ICCs by this way. We
had also calculated the item parameters of MP3-CS5, resulting
in the same difficulty ranking as produced by the classical
item difficulty (portion of correct solutions). In addition, the
resulting person parameters had turned out to follow a bimodal
distribution.

1.0

CQ I
° |
>
= o !
o o 7 l
- | — Al
£ o —_— A2
~ ' — A4
o | —As
o |1/ AB
o

Ability

Fig. 2. 2-parameter ICC of nearly perfect item set in MP3.

V. METHODOLOGY AND RESULTS

One of the main objectives of our project is the defini-
tion, delimitation and clarification of competencies for object-
oriented programming. An important part is to identify poten-
tial competencies and their components. Since we make use of
Schott and Azizi Ghanbari [7, p. 15] to define competencies
through a set of homogeneous tasks that can be carried
out when a student has the underlying competency, the link
between competencies, their components and tasks (items) is
essential to validate the competencies found through IRT.

Therefore we analyzed the structure of all tasks and sample
programming solutions of the mini-projects and attestations
from an expert’s perspective in order to determine the required
skills from a subject-specific cognitive point of view. The anal-
ysis included only the skills required to program the version
of the sample solution. In many cases there are alternative
solutions (e.g. an iterative instead of a recursive solution or
vice versa). The alternative solution paths are determined by
analyzing the students’ solutions.

As methodology we used an inductive qualitative content
analysis (QCA) based on Mayring [38] adapted to the analysis
of source code errors as proposed by Shah [39]. We coded the
programming solutions according to his guidelines (paraphras-
ing, generalization, categorizing, checks). There were 4 coders
and all decisions taken were noted in a coding manual. The
work was carried out in pairs and by individuals.

The paraphrasing step (similar to the methodology of
Mayring [38]) eliminates non content-bearing code and trans-
forms the remaining code into a unified form [39]; the program
code of all the sample solutions is provided in a unified
form. The generalization step [39] was done by transforming
the abstract programming code into an abstract description
in natural language to describe the main parts of the code’s
solution approach. In the categorization step, we categorized
the descriptions of the code according to the basic concepts,

describing the solution components or steps (e.g. concatenate
two arrays, change and re-sort elements in a binary tree).

A central question of our research concerns the level of
granularity at which relevant differences can be found among
the students’ solutions on certain tasks. At the most abstract
level, almost all items of our tasks will measure more or
less the same competencies, e. g. “implement the abstract
data type list with the most important operations”, while at
the most detailed level, probably all students would master
all requirements, e. g. “implement basic algorithmic control
structures in Java”. In between, however, there must be a
level at which relevant differences can be found both in the
item demands and in the individual programming skills. Our
hypothesis is that these are at the level of specific patterns
needed for the solutions, similar to design patterns in the field
of software engineering (see e.g. [40]) or to computational
thinking patterns (see [41]).

For completeness, the code of the first analyzed mini-project
Java classes was categorized in very small parts (e.g. class
definition, variable declaration, conditional statement, ...). We
have decided to categorize these very detailed parts of the
code, which are not complex enough to be an important part
of a competency, only at their first appearance. In the following
we limited ourselves to the identification and categorizing of
programming patterns in solution components or solution steps
with sufficient complexity.

From the analysis of the sample solutions of the mini-
projects and the attestation we have derived a series of 46
potential competency components of reasonable complexity,
which will form the core of all further investigations. Some
examples are:

e Concatenate two arrays

o Determine an extreme value of an array

o Filter array into new array

o Sort list with a comparator

o Filter elements of a list to another list

o Split a chained list by index

o Find elements in a binary tree

o Insert an element in a binary tree

o Change and re-sort elements in a binary tree

o Convert a binary tree to an array

o Calculate the average of all values in a set

e Add two two-dimensional arrays element by element

o Multiply a two-dimensional array with a scalar

o Define recursive methods

o Implement an interface

o Implement polymorphic methods

To achieve reliability and objectivity Mayring [38], 15% of
the total program code was inter-coded.

Since there are alternative solutions to the sample solutions
we currently analyze student’s solutions of the mini-projects
and attestations in order to extend the category system of pos-
sible competencies and competency components to saturation.
Furthermore, we examine the students’ solutions for errors and
misconceptions. The deficiencies in the code can then help to
further structure and differentiate the competency candidates

and, in particular, to improve the feedback of JACK. Errors and
misconceptions are also categorized by a qualitative content
analysis.

VI. FURTHER PROJECT PLAN

Following a mixed-methods approach, we are going to com-
plement the results from different perspectives. In particular,
we conduct interviews, develop questionnaires, and analyze
protocols of the consultation sessions to refine and extend the
set of potential competency components. The further project
plan is described in the following paragraphs.

A. Further data sources

To get insights into the approaches and difficulties of the
students regarding the assignments, we developed guidelines
for semi-structured interviews. The students are interviewed
after each attestation and before the results of the attestation
is published. The selection of students is random and no
personal information is recorded. The students are asked to
give detailed feedback about the most recent mini-project and
the attestation. They grade the difficulty of both assignments
and explain which subtasks were easy or difficult to solve.
They supply information on the external sources they might
have used to solve the problems and whether they worked
with other students, or preferred to work alone. Finally, they
evaluate the feedback given by JACK and how they prepared
themselves for the attestation.

The answers will also serve as basis to develop an online
questionnaire consisting mainly of closed questions. This
questionnaire is going to be distributed in the following course
run to all students of the course to get a representative picture
of the participants. The results of the interviews will further-
more be used to extend our category system of competency
components.

Another method to get insights into the learners’ perspec-
tives are protocols of the consultation sessions, which the
undergraduate teaching assistants write for each session. The
teaching assistants record the number of attending students,
whether the students work in groups, the occurred topics with
frequently asked questions and the average time they interacted
with each student. These protocols are another promising
source to evaluate key problems the students might have with
each course topic. They can also help to adapt and extend the
category system of potential competency components.

B. Analysis Based on Item Response Theory

All results obtained at this point will be compiled together
in order to obtain detailed information on combinations of
competency components that can be regarded as candidates
for empirically founded competencies.

The sequencing tables are then examined for combinations
of columns that could be homogeneous in the psychometric
sense, i.e. whose solution or application essentially depends
exclusively on the development of a common competency
(component). For this purpose, the following evaluations are
performed with all column combinations: latent trait analysis

(LTA) according to [42], non-parametric analysis according
to [43], Rasch tests according to [44], qualitative analysis of
the item-characteristic curves (ICCs), multi Rasch analyses for
potentially multi-factorial item sets and ANOVA with different
psychometric models. The results of all these methods are then
compared, also with classical test theory such as Cronbach-
Alpha and point biserial correlations. This results in a selection
of column combinations that could be relatively homoge-
neous. These combinations are then regarded as definitions of
“competency candidates” in the sense of [7], whose subject-
matter structure can in turn be derived from the competency
components involved.

In the next step, the psychometric personal parameters
for the column combinations of the candidate competencies
are calculated for the students and their distribution are
determined. The candidate competencies are validated by a
comparison with the results of all previous results (interviews,
questionnaires, consultation session protocols etc.). This com-
parisons is expected to result in a detailed description of the
individual candidate competencies from several perspectives,
including the corresponding item demands, learning barriers
and solution patterns. On this basis, the candidate competen-
cies will then be classified into the existing competence models
[10, 17].

C. Adaption of the Items

Depending on the results of the preceding research steps,
the items used in the mini-projects and attestations will be
modified or adapted. A change in the item difficulty could
become necessary if the variance is too low. An adjustment of
the item selectivity, i.e. the slope of the ICC in the Birnbaum
model, can also become necessary if the variance is too low.
An adjustment of the item selectivity (i.e. the slope of the ICC
in the Birnbaum model) can also become necessary, e.g. if the
ICCs within an item set overlap due to a high variance of the
slopes (meaning the specific objectivity is violated). For all
the mentioned adaptations, the knowledge gained up to this
point, e.g. about problem areas, difficulty of the competency
candidates or the frequency of certain solution patterns, will
most likely prove to be very helpful. The result is a complete,
ready-to-use set of items for all mini-projects and attestations,
whose quality as a testing instrument from a psychometric
point of view should increase from version to version.

D. Development of Feedback

With these results, we strive to improve the feedback
of JACK. Using the gained understanding of programming
competencies, we can provide more support for the students.
If we identify which missing concepts lead to a specific error
by the students, we can inform them about the reason for this
error. Instead of a simple error message or short hint what
the error might be, we will be able to inform the student
very specifically about the topics and concepts, which have
to be revised in order to solve the given task. This might
significantly improve the way a student is able to learn the
skills needed to become a programmer.

VII. CONCLUSION

From the extensive data of e-assessment systems, conclu-
sions can be drawn about knowledge gaps and misconceptions,
but also about competencies and their components. This data
can be combined with further data sources (like interviews
with the learners) to get a more complete picture.

The empirically-based definition of competencies further
serves as basis for the generation of high-quality feedback.

The approach of defining and measuring competencies of
our project is not limited to object-oriented programming, but
could also be generalized to other topics and even disciplines.

ACKNOWLEDGMENT

We thank Ronja Billenstein for her support with the quali-
tative content analysis.

REFERENCES

[1] M. Goedicke and M. Striewe. “10 Jahre automatische Be-
wertung von Programmieraufgaben mit JACK - Riickblick
und Ausblick”. In: 7,5. HDI-Workshop des GI-Fachbereichs
Informatik und Ausbildung / Didaktik der Informatik. 2017.
DOI: https://doi.org/10.18420/in2017_21.

[2] J. Krugel and P. Hubwieser. “Computational thinking as
springboard for learning object-oriented programming in an
interactive MOOC”. In: 2017 IEEE Global Engineering Ed-
ucation Conference (EDUCON). 2017, pp. 1709-1712. DOI:
https://doi.org/10.1109/EDUCON.2017.7943079.

[3] J. Krugel and P. Hubwieser. “Strictly Objects First: A Mul-
tipurpose Course on Computational Thinking”. In: Compu-
tational Thinking in the STEM Disciplines: Foundations and
Research Highlights. Ed. by M. S. Khine. Cham: Springer
International Publishing, 2018, pp. 73-98. DOI: https://doi.
org/10.1007/978-3-319-93566-9_5.

[4] P. Hubwieser, M. Striewe, M. Berges, and M. Goedicke.
“Towards Competency Based Testing and Feedback™. In: Pro-
ceedings of IEEE Global Engineering Education Conference
(EDUCON). 2017. DOTI: https://doi.org/10.1109/EDUCON.
2017.7942896.

[5] T. Raykov and G. A. Marcoulides. Introduction to Psychome-
tric Theory. Routledge, 2011.

[6] F. E. Weinert, ed. Leistungsmessungen in Schulen. Weinheim
und Basel: Belz Verlag, 2001.

[71 F Schott and S. Azizi Ghanbari. “Modellierung, Vermittlung
und Diagnostik der Kompetenz kompetenzorientiert zu unter-
richten - wissenschaftliche Herausforderung und ein praktis-
cher Losungsversuch”. In: Lehrerbildung auf dem Priifstand
2.1 (2009), pp. 10-27.

[8] J. Hartig, E. Klieme, and D. Leutner, eds. Assessment of
competencies in educational contexts. Toronto: Hogrefe &
Huber Publishers, 2008. I1SBN: 0889372977.

[9] E. Klieme and D. Leutner. Kompetenzmodelle zur Erfassung
individueller Lernergebnisse und zur Bilanzierung von Bil-
dungsprozessen: Uberarbeitete Fassung des Antrags an die
DFG auf Einrichtung eines Schwerpunktprogramms. Frankfurt
a. Main, Duisburg, Essen, 2006.

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

J. Neugebauer, J. Magenheim, L. Ohrndorf, N. Schaper, and
S. Schubert. “Defining Proficiency Levels of High School
Students in Computer Science by an Empirical Task Anal-
ysis Results of the MoKoM Project: Informatics in Schools.
Curricula, Competences, and Competitions: 8th International
Conference on Informatics in Schools: Situation, Evolution,
and Perspectives, ISSEP 2015, Ljubljana, Slovenia, September
28 - October 1, 2015, Proceedings”. In: Cham: Springer
International Publishing, 2015, pp. 45-56. DOIL: https://doi.
org/10.1007/978-3-319-25396-1_5.

J. Neugebauer, P. Hubwieser, J. Magenheim, L. Ohrndorf, N.
Schaper, and S. Schubert. “Measuring Student Competences
in German Upper Secondary Computer Science Education”.
In: Informatics in Schools. Ed. by Y. Giilbahar and E. Karatas.
Heidelberg, New York: Springer, 2014, pp. 100-111. poI:
https://doi.org/10.1007/978-3-319-09958-3_10.

J. Bennedsen and C. Schulte. “Object Interaction Competence
Model v. 2.0”. In: Learning and Teaching in Computing and
Enginering (LaTiCE) (2013), pp. 9-16. DOI: https://doi.org/
10.1109/LaTiCE.2013.43.

K. Broker, U. Kastens, and J. Magenheim. “Competences
of Undergraduate Computer Science Students”. In: KEYCIT
2014 - Key Competencies in Informatics and ICT 7 (2015),
pp. 77-96.

A. Miihling, P. Hubwieser, and M. Berges. “Dimensions
of Programming Knowledge”. In: Informatics in Schools.
Curricula, Competences, and Competitions. Vol. 9378. LNCS.
2015, pp. 32-44. por: https://doi.org/10.1007/978-3-319-
25396-1_4.

P. Hubwieser et al. “Computer science/informatics in sec-
ondary education”. In: Proceedings of the 16th annual con-
ference reports on Innovation and technology in computer
science education - working group reports. Ed. by L. Adams
and J. J. Jurgens. ITICSE-WGR ’11. New York, NY and USA:
ACM, 2011, pp. 19-38. DOTI: https://doi.org/10.1145/2078856.
2078859.

P. Hubwieser et al. “A Global Snapshot of Computer Science
Education in K-12 Schools”. In: Proceedings of the 2015
ITiCSE on Working Group Reports. ITICSE-WGR ’15. New
York, NY, USA: ACM, 2015, pp. 65-83. DOI: https://doi.org/
10.1145/2858796.2858799.

M. Kramer, P. Hubwieser, and T. Brinda. “A Competency
Structure Model of Object-Oriented Programming”. In: Inter-
national Conference on Learning and Teaching in Computing
and Engineering (LaTiCE). IEEE Xplore Digital Library,
2016, pp. 1-8. DOIL: https://doi.org/10.1109/LaTiCE.2016.24.
A. Robins, N. Rountree, and J. Rountree. “My Program Is
Correct but It Doesn’t Run: A Review of Novice Program-
ming and a Study of an Introductory Programming Paper”.
Technical Report. Otago, NZ: University of Otago, 2001.

A. Robins, P. Haden, and S. Garner. “Problem Distributions
in a CS1 Course”. In: Proceedings of the Sth Australasian
Conference on Computing Education - Volume 52. ACE
’06. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc, 2006, pp. 165-173. ISBN: 1-920682-34-1.

A. Robins, J. Rountree, and N. Rountree. “Learning and teach-
ing programming: A review and discussion”. In: Computer
Science Education 13 (2003), pp. 137-172. 1SSN: 0899-3408.
DOL: https://doi.org/10.1076/csed.13.2.137.14200.

N. Ragonis and M. Ben-Ari. “A long-term investigation of the
comprehension of OOP concepts by novices”. In: Computer
Science Education 15.3 (2005), pp. 203-221. DOI: https://doi.
org/10.1080/08993400500224310.

T. Sirkid and J. Sorva. “Exploring Programming Miscon-
ceptions: An Analysis of Student Mistakes in Visual Pro-
gram Simulation Exercises”. In: Proceedings of the 12th Koli
Calling International Conference on Computing Education

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Research. New York, NY, USA: ACM, 2012, pp. 19-28. DOI:
https://doi.org/10.1145/2401796.2401799.

T. Sirkid. “Recognizing Programming Misconceptions: An
analysis of the data collected from the UUhistle program
simulation tool”. Master’s Thesis. Aalto University, 2012.
DOL: https://doi.org/10.1145/2401796.2401799.

J. Vahrenhold and W. Paul. “Developing and validating test
items for first-year computer science courses”. In: Computer
Science Education 24.4 (2014), pp. 304-333. DOI: https://doi.
org/10.1080/08993408.2014.970782.

R. Caceffo, S. Wolfman, K. S. Booth, and R. Azevedo. “De-
veloping a Computer Science Concept Inventory for Introduc-
tory Programming”. In: Proceedings of the 47th ACM Tech-
nical Symposium on Computing Science Education. SIGCSE
’16. Memphis, Tennessee, USA: ACM, 2016, pp. 364-369.
DOL: https://doi.org/10.1145/2839509.2844559.

R. Caceffo, P. Frank-Bolton, R. Souza, and R. Azevedo.
“Identifying and Validating Java Misconceptions Toward a
CS1 Concept Inventory”. In: Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Sci-
ence Education. ITiCSE °19. Aberdeen, Scotland Uk: ACM,
2019, pp. 23-29. DoOI: https://doi.org/10.1145/3304221.
3319771.

D. Zehetmeier, A. Bottcher, A. Briiggemann, and T. Veronika.
Development of a Classification Scheme for Errors Observed
in the Process of Computer Programming Education. 2015.
DOL: https://doi.org/10.4995/HEAd15.2015.356.

L. W. Anderson and D. R. Krathwohl. A taxonomy for learn-
ing, teaching, and assessing: A revision of Bloom’s taxonomy
of educational objectives. Abridged ed., 4. print. New York:
Longman, 2001. 1SBN: 080131903X.

K. llleris. Lernen verstehen: Bedingungen erfolgreichen Ler-
nens. Klinkhardt, 2010. 1ISBN: 9783781517639.

D. M. Souza, K. R. Felizardo, and E. F. Barbosa. “A System-
atic Literature Review of Assessment Tools for Programming
Assignments”. In: 2016 IEEE 29th International Conference
on Software Engineering Education and Training (CSEET).
Apr. 2016, pp. 147-156. DOI: https://doi.org/10.1109/CSEET.
2016.48.

H. Keuning, J. Jeuring, and B. Heeren. Towards a Systematic
Review of Automated Feedback Generation for Programming
Exercises - Extended Version. Tech. rep. Technical Report UU-
CS-2016-001. Utrecht University, Mar. 2016. DOI: https://doi.
org/10.1145/2899415.2899422.

M. Gaudencio, A. Dantas, and D. D. S. Guerrero. “Can Com-
puters Compare Student Code Solutions as Well as Teachers?”
In: Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, SIGCSE’14. Atlanta, Georgia,
USA, Mar. 2014. pOTI: https://doi.org/10.1145/2538862.
2538973.

N. Falkner, R. Vivian, D. Piper, and K. Falkner. “Increasing
the Effectiveness of Automated Assessment by Increasing
Marking Granularity and Feedback Units”. In: Proceedings
of the 45th ACM Technical Symposium on Computer Science
Education, SIGCSE’14. Atlanta, Georgia, USA, 2014, pp. 9-
14. DOI: https://doi.org/10.1145/2538862.2538896.

P. Denny, A. Luxton-Reilly, and D. Carpenter. “Enhancing
Syntax Error Messages Appears Ineffectual”. In: Proceedings
of the 2014 Conference on Innovation and Technology in
Computer Science Education. ITiCSE ’14. Uppsala, Sweden:
ACM, 2014, pp. 273-278. DOI: https://doi.org/10.1145/
2591708.2591748.

K. Ala-Mutka, T. Uimonen, and H.-M. Jédvinen. “Supporting
students in C++ Programming Courses with Automatic Pro-
gram Style Assessment”. In: Journal of Information Technol-
ogy Education 3 (2004), pp. 245-262.

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

E. Araujo, D. Serey, and J. Figueiredo. “Qualitative aspects of
students’ programs: Can we make them measurable?” In: 2016
IEEE Frontiers in Education Conference (FIE). Oct. 2016,
pp. 1-8. DOI: https://doi.org/10.1109/FIE.2016.7757725.

O. Seppild, P. Thantola, E. Isohanni, J. Sorva, and A. Vi-
havainen. “Do We Know How Difficult the Rainfall Problem
is?” In: Koli Calling 2015. Nov. 2015, pp. 87-95. DOIL: https:
//doi.org/10.1145/2828959.2828963.

P. Mayring. Qualitative content analysis: theoretical foun-
dation, basic procedures and software solution. 2014. URL:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173.

P. Shah, M. Berges, and P. Hubwieser. “Qualitative Content
Analysis of Programming Errors”. In: Proceedings of the
5th International Conference on Information and Education
Technology. ICIET *17. New York, NY, USA: ACM, 2017,
pp. 161-166. DOI: https://doi.org/10.1145/3029387.3029399.
E. Gamma. Design patterns: Elements of reusable object-
oriented software. 40th ed. Addison-Wesley professional com-
puting series. Boston: Addison-Wesley, 2012. 1SBN: 0-201-
63361-2.

A. R. Basawapatna, A. Repenning, K. H. Koh, and H. Nick-
erson. “The zones of proximal flow: guiding students through
a space of computational thinking skills and challenges”. In:
Proceedings of the ninth annual international ACM confer-
ence on International computing education research. Ed. by
B. Simon, A. Clear, and Q. Cutts. ICER *13. New York, NY
and USA: ACM, 2013, pp. 67-74. DOI: https://doi.org/10.
1145/2493394.2493404.

D. J. Bartholomew, F. Steel, I. Moustaki, and J. I. Galbrath.
Analysis of multivariate social science data. 2nd ed. Chapman
& Hall/CRC statistics in the social and behavioral sciences
series. Boca Raton Fla.: CRC Press / Taylor & Francis, 2008.
ISBN: 978-1-58488-960-1.

I. Koller and R. Hatzinger. “Nonparametric tests for the Rasch
model: explanation, development, and application of quasi-
exact tests for small samples”. In: InterStat 11 (2013), pp. 1-
16.

I. Koller, R. W. A. Alexandrowicz, and R. Hatzinger. Das
Rasch-Modell in der Praxis: Eine Einfiihrung mit eRm.
Vol. 3786. UTB Psychologie, Wirtschaftswissenschaften.
Wien: Facultas, 2012.

