
How to Transform Programming Processes
in Scratch to Graphical Visualizations
Alexandra Simon, Katharina Geldreich, Peter Hubwieser

Technical University of Munich
TUM School of Education

{a.simon,katharina.geldreich,peter.hubwieser}@tum.de

ABSTRACT
Currently in many countries efforts are undertaken to bring pro-
gramming education into the early levels of childhood education,
like primary school or even kindergarten. Therefore, it is becom-
ing more and more important to gain insight into which teaching
methods and content would be appropriate for young students of
primary levels. For this, we have designed a specific three-day in-
troductory programming course for 4th-grade students (ages 9 -
10), which was held four times up to now. Fifty-eight children (26
girls and 32 boys) participated in the courses from May to August
2016. Besides the analysis of the course results, it is particularly in-
teresting, in which way the programming processes of the children
take place and if there are distinguishable types of young program-
ming learners. During the courses, we captured the screens of the
students’ laptops and also filmed all the events in the classroom. In
a case study, we used these recordings and videos to investigate
the programming processes of two students (one girl and one boy
from the same class). After the coding process of the videos, we
developed a new visualization technique to illustrate the processes
and to explore differences and special features of the individual
approaches.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Children.

KEYWORDS
Computer science education; primary school; primary education;
scratch; programming; screen capturing; mixed methods; qualita-
tive analysis

ACM Reference Format:
Alexandra Simon, Katharina Geldreich, Peter Hubwieser. 2019. How to
Transform Programming Processes in Scratch to Graphical Visualizations. In
14th Workshop in Primary and Secondary Computing Education (WiPSCE’19),
October 23–25, 2019, Glasgow, Scotland Uk.ACM, NewYork, NY, USA, 9 pages.
https://doi.org/10.1145/3361721.3361723

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7704-1/19/10. . . $15.00
https://doi.org/10.1145/3361721.3361723

1 INTRODUCTION
Computer Science (CS) has to overcome several challenges. Schools
and universities are confronted with different misconceptions and
prejudices towards CS [8] which manifest themselves from an early
age [17]. In order to prevent students from developing negative
attitudes, one approach is to introduce Computer Science concepts
like programming as early as in primary school to provide oppor-
tunities for children to experience technology and CS. Children
should learn that they can use computers not only as users but also
as creators [1]. This role change combined with the fun experience
of programming could increase their self-confidence towards CS in
particular and technology in general [20]. At the same time, the dis-
cussion about the necessity of computer science and programming
in childhood education is growing steadily [20]. While several coun-
tries have already introduced CS in their primary school curricula
(e.g. the UK [4] and Australia [7]), Germany has not yet developed
mandatory guidelines on how to deal with the new topics.

To find out which teaching methods and content would be ap-
propriate for German primary schools, we designed an introduc-
tory programming course for fourth graders. Within this, we used
Scratch as a programming environment, because it is appropriate
for our target audience of 9 to 10-year old children. [6].

Although a predominant goal of the course was to change the
students’ attitudes towards CS, we also wanted to gain insight
into how they create programs and how they apply the learned
programming concepts. For this, we recorded the screens of the
students’ laptops and filmed all events in the classroom during the
course days. Afterwards, we analyzed these recordings with a self-
developed category system and visualized the results of this step in
order to better understand the process. Our research questions in
this work were:

• How can programming processes be analyzed by using screen
recordings?

• Which differences can be detected between the programming
processes of the students?

• How can programming processes be visualized so that dif-
ferences are observable?

This may be the first step to investigate if there are different
programming types even in primary levels and how they can be
distinguished.

This work is structured as follows: First, we discuss some back-
groundwork regarding computer science courses for primary school
students, programming habits, and methodological approaches. In
addition, we provide a short overview of the design of our program-
ming course. This is followed by a description of the methodology
and analysis. In order to illustrate the qualitative analysis of the

© ACM, 2019 This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in: WiPSCE'19 Proceedings of the 14th Workshop in Primary and Secondary
Computing Education (2019)
http://doi.acm.org/10.1145/3361721.3361723

https://doi.org/10.1145/3361721.3361723
https://doi.org/10.1145/3361721.3361723

WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk Alexandra Simon, Katharina Geldreich, Peter Hubwieser

programming processes, we present the analysis of two students
from our courses. Then, the results are presented with a discussion
of the findings. The paper closes with a summary of the findings
and an outlook for further work.

2 RELATEDWORK AND THEORETICAL
BACKGROUND

2.1 CS courses for primary school students
In recent years, a variety of courses has been developed to expose
children to computer science concepts. Amongst others, various
courses set their focus on programming. Tsan et al. [21] imple-
mented an in-school computer science course for 5th-grade stu-
dents. They co-designed it with a primary school teacher who had
prior knowledge in technology but no general CS background. The
course was taught in 30-hours during a regular school year. In or-
der to analyze the effectiveness of this collaboratively developed
curriculum, the researchers collected data with interviews before
and after the course, made videos of the students working, made
screen recordings and collected materials created by the students,
such as short essays and storyboards. During the class, the students
completed two programming projects with Scratch and almost all
of them worked in pairs (18 pairs in total). One key finding from
this research is the usefulness of supportive, collaborative work.

Programming is also an important part of the CS courses in
the work of Duncan and Bell [5]. They described an example of a
computer science course for primary school students. The authors
implemented a CS class, which took place an hour a week during a
school year. More than 600 students aged between 5 and 12 were
taught during the study. The main goals of the course were that
the students engage with the presented content and enjoy the
classes. Furthermore, rather than learning to apply any specific
programming language, the students were to become familiar with
the basic principles of programming. During these courses, the
students worked with the programming language Scratch and had
to solve two main programming quizzes at the end.

2.2 Usage and analysis of screen recordings
In the light of the ongoing digitization, new research methods are
emerging. One of these is the capturing of computer screens which
enables researchers to digitally record the interaction between
humans and computers. Although other methods like videography
are more common, the main advantage of screen captures is that
they obtain a clear and consistent picture of the screen. Furthermore,
it is possible to track the audio from the microphone synchronous
with the video [19]. Another benefit is that the researcher does not
have to be present as an observer next to the participant [11]. There
is a variety of software to capture screens. Some of the popular
applications are Camtasia1 and Snagit2 of the company Techsmith,
Adobe Captivate3 and Snapz Pro4. All of these applications offer
different recording modes, e.g. deciding the size of the recorded
region, recording mouse movement and the size of the resulting
files [11]. Screen recordings are used within research projects of
1https://www.techsmith.com/camtasia.html
2https://www.techsmith.com/screen-capture.html
3http://www.adobe.com/de/products/captivate.html
4http://www.ambrosiasw.com/utilities/snapzprox/

various scientific fields. The authors of [19] want to get insights
into how teams use their computers to coordinate work. For this,
they installed the Techsmith Camtasia software on the computers
of eight participants. By starting and stopping the software on their
own, they were able to decide which part of their work they want
to share with the researchers. Tang et al. [19] mention the following
advantages of screen recordings: no researcher has to be physically
present, all computer interactions/conversations are recorded, and
no physical video equipment in participants’ work environments
are needed. Further, the recordings capture a very detailed record
of interactions.

Tsan et al. [21] created screen recordings of students program-
ming during an in-school computer science course for 5th-grade
students. The screen captures are used to discover how the students
interact with the Scratch software and how they develop their pro-
grams. Because almost all children worked in pairs, it is interesting
to see which student programmed what part of their project.

2.3 Visualization of (programming) processes
An important step to answer the given research questions was to
visualize the coded data - the development of a perfect visualization
is often a big challenge [12].

There are different classifications of visualization. In [12] the
authors named three categories of visualization: a) Scientific vi-
sualization to understand physical phenomena or mathematical
models; b) Software visualization, which helps people to learn the
use of e.g. software; c) Information visualization which visualizes
information with the use of spatial or graphical representations. A
more detailed classification can be found in the periodic table of
visualization [14]. For the six main categories Data Visualization,
Information Visualization, Concept Visualization, Strategy Visual-
ization, Metaphor Visualization and Compound Visualization, the
authors described suitable methods. Further, they divided the meth-
ods in Process Visualization and Structure Visualization. This work
focuses on Process Visualization methods of the Information Visu-
alization class. Examples for this in the periodic system are Cycle
Diagram, Petri Net, System Dynamics / Simulation, Timeline, Flow
Chart and Data Flow Diagram.

Very popular diagrams in computer science are behavior and
structure diagrams of the Unified Modeling Language (UML)[18].
To visualize processes and workflows in software, there are, for
example, Activity Diagrams, Communication Diagrams, and Se-
quence Diagrams. For this work, the most interesting UML diagram
type is the Sequence Diagram. It shows object interactions during
a program execution arranged in a time sequence [18].

2.4 Habits of programming
A habit, in general, can be defined as "a settled tendency or usual
manner of behavior" or as "an acquired mode of behavior that
has become nearly or completely involuntary"5. By this definition,
Meerbaum-Salant et al. [16] defined two characteristics to identify
a habit: 1) a behavior must be settled or usual and 2) the behavior
must be involuntary. They found that Scratch engenders different
programming habits. The first one is a bottom-up programming
process. The students try to solve problems by dragging all blocks
5https://www.merriam-webster.com/dictionary/habit

How to Transform Programming Processes to Graphical Visualizations WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk

they think are appropriate to the script. Afterwards, they com-
bine them to one script. Another found habit is called Extremely
Fine-Grained Programming and complements the habit described
above. Students used a top-down approach where tasks are decom-
posed into smaller ones. But they took them to its extreme. With
the decomposition, the units became extremely small and usually
lacked logical coherency. Both programming habits are contrary
to common practices in computer science: to solve a problem the
common process starts with the development of an algorithm. Fur-
ther programming constructs are used to structure programs in a
clear way.

3 DESIGN OF THE COURSE
We developed a three-day course for primary school students of
the fourth grade (ages 9 - 10), see also [10]. As context, we chose
"Circus" for all tasks and materials, out of three reasons. First, we
regarded this as an attractive field of their personal experience.
Second, a circus offers a variety of interesting tasks to simulate the
actions of animals or human beings. Third, we hoped to attract both
girls and boys equally by this metaphor. On each day, we spent
four hours with the kids. Day by day, the students were exposed
to a more and more detailed picture of programming. In the end,
we expected that the children had learned the basic principles of
programming, in particular, to work with the programming environ-
ment as well as to apply and combine algorithmic control structures.

Day 1. Most of the students did not have any previous knowl-
edge of programming or computer science. Therefore, the goal of
the first day is to give them a basic idea of how a computer program
works. They were to realize that programs execute a particular
task by following precise and clear instructions. Because we did
not want to overstrain the students, we decided to introduce the
basic algorithmic concepts "unplugged" [2] before any program-
ming. Hence we use social activities and group problem-solving
on day one without actually working on computers. In order to
learn how to split tasks into smaller parts, we provided a variety of
short exercises in which different activities had to be transformed
according to unambiguous instructions. Afterward, the groups had
to work together to solve a more complex task. To take up the circus
theme, we let the students program each other, solving tasks like
searching for missing items or animals in a circus tent. To represent
the solutions, we use haptic (printed and shrink-wrapped) Scratch-
like programming blocks to prepare "real" computer programming
on the second day.

Day 2. The goal of the second day is to enable the students to
create simple Scratch programs that produce Multimedia output.
To provide a child-friendly programming environment and to spare
the students any unnecessary syntactical overhead, we decided to
use the block-based language Scratch [15]. We created a learning
circle with increasingly difficult stations, which introduces the core
elements of Scratch one by one, leading from simple sequences to
control structures like loops and conditional statements. In each
part of the circle, the students have to solve tasks that are presented
on out-handed instruction sheets. To support the students’ expected
variety in knowledge and learning pace, we prepared additional

tasks as well as helpful tips.

Day 3. On the third day, we wanted to find out what the students
had learned and if they could solve more open tasks. In addition,
we wanted to stimulate the children to work creatively and in a self-
directed fashion. To compare the outcomes, we set the following
"mandatory" requirements for the students’ projects. The programs
should a) work on more than one sprite b) move the sprites during
execution c) comprise at least one iteration and d) include at least
one conditional statement. After meeting these requirements, the
students should continue their programming work without any
further guidelines. They were free to experiment with Scratch, to
invent their circus stories and implement these. At the end of the
third day, all programs were presented in front of the course, and
the students had the opportunity to comment their project.

4 METHODOLOGY
To answer the research questions (see Section 1), we apply a quali-
tative analysis. The described code system and visualization were
developed with the first recorded data from the pilot course in May
2016. Both methods were refined in an iterative process.

4.1 Category system and coding process
To examine the process of programming of the students, we cat-
egorized all of their actions. Also we wanted to find out if and
how these processes differ from child to child. In order to rate the
actions which were made during the programming process, we
developed a specific category system. For this, we consider which
actions are possible in the Scratch environment and which actions
are interesting for our research question. At the top-level, we dis-
tinguish between the four main categories: A. Sprites, B. Backdrops,
C. Blocks and D. Program that are described and differentiated in
the following.

A. Sprites
Every sprite has a name (Sprite name) and gets an identifier (Sprite
ID) when added to the project. Possible actions which were codable
for sprites are Add sprite, Remove sprite and Edit sprite. The code
Edit sprite is used when the student opens the costume view and
edits/changes the costume/sprite. It is common that a student opens
the costume view by mistake. Then this was not coded as an edit.
For every action which was coded, name and identifier of the sprite
were noted.

B. Backdrops
Like Sprites, every backdrop has a name (Backdrop name) and an
identifier (Backdrop ID). There are codes for adding a backdrop
(Add backdrop), editing a backdrop (Edit backdrop) and removing a
backdrop (Remove backdrop). Students edited a backdrop when they
opened the backdrop view in Scratch. If the student chose another
backdrop from a stack of added backdrops, it is coded as Change
backdrop. For every activity which was coded, name and identifier
of the backdrop were captured.

C. Blocks
Scratch blocks have a predefined name (Block name). When adding

WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk Alexandra Simon, Katharina Geldreich, Peter Hubwieser

a block to the project (Add block) it gets an identifier. A block can
be removed from the script (Remove block) and moved to another
position (Move block). The code Edit block is used when the student
changes e.g. the text in a say_for_secs. Every block has a current
position within the Scratch script which was coded as Block posi-
tion. When moving a block the Block position is the position after
the movement. For every action which was coded the name and
identifier of the block were noted.

D. Program
Because it is important for the programming process, program ac-
tions were also categorized. The student can do a Run program e.g.
when clicking on the green flag. Also the program can be stopped
(Stop program). Most of the students created more than one project.
To track if a new project is created, we added the category Create
new file. To capture the change between projects that are the codes
Open file and Close file.

By using this code system, we coded the screen captures of two
children of the third course day. Two researchers rated these screen
captures to assess inter-coder agreement and reliability. First, we
imported the screen captures and the video of the camera of this
day in Adobe Premiere Pro. It was shown that this software is well
suited for this kind of analysis because the videos can be viewed in
parallel and they can be easily re-sized. After the synchronization
and cropping of the video tracks, we coded the videos with markers
which do not alter the video itself.

To analyze the programming processes, we used screen captures
in combination with videotaped material because this procedure
increases the understanding of the working methods and the coding
becomes easier. Sometimes the children swap their seats with their
friends for some minutes. This is very difficult to detect only with
the screen capture. Also because the voices of the students are
similar at this young age.

Further, the children say important things for us from time to
time, like "Huh? Why doesn’t this work?". This is a marker for us
to take a closer look at this position.

Table 1: Elements of Development Diagrams

Element Description

A sprite is added

+ A block is added

… A block / sprite is edited

> A block is moved

x A block / sprite is removed

Image of the block

Program is started

Lifeline of a sprite

4.2 Visualization
As shown in Section 2.3, there are currently many visualizations for
software and hierarchical data. The problem with most diagrams
and images is that they show parallel or hierarchical data. In con-
trast, a programming process is sequential; there are no hierarchical
structures or alternatively branches. But still, it is important to see
different sprites in the same diagram. For this purpose, we found
no appropriate visualization.

Even the described UML diagrams which are common in soft-
ware engineering are not usable in this case. While it is possible
to model interactions and communication within a program or
between program and user, this is not the use case in this work.

As result of the coding of the videos, we obtained a huge table
with all coded positions, which includes e.g. time-stamp, ID, action,
and sprite. With this table, we developed two different diagram
types to show the results of each student in a clear and compre-
hensible way. They are described and illustrated in the following
sections.

4.3 Development diagram
We called the first created diagram type Development Diagram. It is
based on UML sequence diagrams which show how objects operate
with one another and in what order. Instead of this original diagram,
Development Diagrams describe the programming process for all
Sprites of one Scratch project, but no communication between them.
It contains eight elements which are displayed in Table 1. Fig. 1
shows an example Development Diagram. It starts with the first
Sprite which is added to the project. Because the time-line runs
from top to bottom, every new step in the programming process is
a new line in the diagram. After adding Sprite A, the user added
Sprite B. The editing of Sprite B is shown with the three points in
line 3. To describe if a block was added, edited, deleted or moved
to another position within the script, the image of the block is
displayed with the associated icon in front of it (Table 1). A dashed
horizontal line stand for a run of the script. In this example, the
project is started with a click on the green flag. Sprite C is deleted
without editing the script or the sprite itself.

Table 2: Elements of Sprite Diagrams

Element Description

A sprite is added

+ A block is added

… A block / sprite is edited

> A block is moved

x A block / sprite is removed

Image of the block

Block is contained in another block

How to Transform Programming Processes to Graphical Visualizations WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk

Sprite A

 Sprite B

 …

 Sprite C

+

…

 +

 +

 x

x

 +

 >

tim
e

Figure 1: Example of a Development Diagram

4.4 Sprite diagram
The second diagram type we called Sprite Diagram. It is in the
broadest sense a mix between an object diagram and an activity
diagram. Sprite Diagrams describe the programming process for
one Sprite of the Scratch project. It contains seven elements which
are displayed in Table 2. Fig. 2 shows an example Sprite Diagram. It
starts with the name of the Sprite.

Because the time-line runs from top to bottom, every new step in
the programming process is a new line in the diagram. The columns
of the diagram are blocks which were used in the project. Because it
is interesting, which exact block was added or deleted, the changes
of the same block are written among each other. Some block types,
like forever or if_then can contain other blocks. To visualize which
blocks were added within forever or if_then, arrows are used.

5 APPLICATION
All courses were taught in German by a female, formally educated
primary school teacher, who was also a CS researcher. Additionally,
a male computer scientist assisted during the courses. In May 2016,
a pilot study was carried out at a student research center led by our
university. After making improvements of the tasks, we conducted
the course with fourth-grade classes in June and July. The course
was held in our department, where we could provide a consistent
setting and stable technical equipment. Another course followed in
August at the student research center. To collect the important data
from the course, we used a mixed method approach. All sessions
were videotaped, enabling us to analyze all actions and interactions
of the students. At the beginning and the end of each course day,
we conducted group interviews with the classes. In order to get
an idea of the students’ prior knowledge, as well as their mental
image of programming, we used a variety of interviewing and
reflection methods. In addition, we captured the screens of the

Sprite

 +

 +

 …

 +

 >

tim
e

Figure 2: Example of a Sprite Diagram

student computers during the programming exercises on days 2
and 3, to get an image of the students’ working methods. To collect
the students’ Scratch programs, we saved the projects after the
course had ended. In order to obtain further insight into the quality
of the projects and to make a first step towards the whole analysis,
we analyzed the Scratch results of the participants [9].

Further, the students described at the beginning of day 3, which
program they want to create, which sprites they want to use and
how the sprites are supposed to act during execution. We compared
these statements with the codings and the results of the Scratch
projects.

Applying this category system, two researchers rated the two
cases which we describe in the following sections to assess inter-
coder agreement and reliability. In order to get an idea of the accord,
the Brennan coefficient [3] and raw agreement were calculated.
Both resulted in an almost perfect agreement according to Landis
[13]. The common Cohen and Krippendorff factors are not applica-
ble, as they require a normal distribution of the coded cases over
the codes [22].

6 RESULTS
In order to illustrate the described data analysis process, we show
two example cases in the following sections. Both children partici-
pated in the same course in July 2016 and were selected randomly
for the analysis. We intentionally chose a female and a male student.
We anonymized their identities.

6.1 Student 1 - Oliver
The first student, Oliver, is a 10-year old boy. At the beginning
of day 3, he explained that he wanted to create a program with
five sprites. They are intended to play soccer or do other sports
activities. After the coding process, we examined if Oliver reached
his set goal from the beginning of the course day: his project is
exactly like he wanted it to be (see Fig. 3 and 4). He integrates five
characters which are acting and three sprites just for decoration
(the letters "T", "O" and "R" which stands for the word "goal" in
German).

The program is a part of a soccer game. As soon as the figure
"Adrian" touches the ball, it glides into the goal.

WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk Alexandra Simon, Katharina Geldreich, Peter Hubwieser

Figure 3: Stage for the project of Oliver (Student 1)

Figure 4: Code for the project of Oliver (Student 1)

Even during the coding process, the researchers discovered some
interesting positions in the programming process. This was con-
firmed by the diagrams which were prepared afterward. Altogether,
the student worked in a very straight-forward way. He added blocks
(and sometimes edited it directly after adding), and then he went to
the next step. He rarely edited a block again after many other steps.
Regarding this, we can easily find special points in the diagrams.
For example, Fig. 9 shows such a point. Oliver added the same block
touching to the sprite "Football player" many times, edited it, moved
it and deleted it. This shows an irregularity in his behavior. When
taking a look at exact this position in the screen capture, the boy
said: "Huh? Why doesn’t this work?" This shows that the diagram
was a good indicator to find this position. The problem for him here
was that he first chose the current sprite for touching. In Scratch,
nothing happened at this moment.

Editing the script of a wrong sprite was a typical mistake of his.
During coding, we noticed that at some point round about 15 starts
(click on green flag) in turn happened. At a closer look, we found
that he wanted the sprite Adrian to move towards the soccer ball.
But instead of using a loop to solve this, he only added amove_steps
block and clicked the green flag as often as needed to move Adrian
to the soccer ball. As shown in Fig. 7, it seems that Oliver deleted
some sprites without any obvious reason. For example, the sprite

Figure 5: Stage for the project of Charlotte (Student 2)

Figure 6: Code for the project of Charlotte (Student 2)

"Ball" The removal of blocks, on the other hand, is rare. What was
special about his programming was, that he sometimes added the
same sprites again after removing them. An example in the figure
is "Soccer ball". He edited the script of this sprite and removed it
suddenly. A few steps later he added the sprite again to the project.

6.2 Student 2 - Charlotte
The second student was a 10-year old girl in the same class. We
called her Charlotte. At the beginning of day 3, she explained,
that she wanted to include four sprites in her project: an elephant,
children, a monkey and a circus director. They should be part of a
circus show.

Already at the beginning of the coding, we determined, that her
first Scratch program differs greatly from her planning. Altogether
Charlotte created three different projects and fullfilled all given re-
quirements with her first project (see Fig. 5 and 6). Similar to Oliver,
the researchers encountered interesting points in the programming
process, which are confirmed by the diagrams. She worked a bit
different than her classmate. She used a lot of time at the beginning
of each program to create the scene and she rearranged elements
often. It seems like Charlotte paid great attention to the overall
picture of her project. She edited sprites almost every time after
adding it to the scene (Fig. 8). After adding a new block, she looked
up all other blocks, whether they still fit in the project. In contrast
to Oliver, the sprite diagrams of Charlotte are less wide but much
deeper (see Fig. 10). Thus she used less different blocks, but moved

How to Transform Programming Processes to Graphical Visualizations WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk

Muscle man

 Ball

 x

 Soccer ball

 Monkey

 Boy

 Tiger

 +

 +

 +

 >

 x

 x

 +

x

 Football

 …

 x

 Adrian

 Referee

 +

 +

 …

 +

 +

 …

 +

 x

 +

 +

 +

 …

 +

 +

 …

 +

 >

 +

 …

 Soccer ball

 +

 >

 +

 …

 …

Figure 7:Development Diagram for step 1 to 51 of Oliver (Stu-
dent 1)

and edited them very often. Special points in her programming
process can be found in moments when she worked very straight-
forward. This was often when she replicated a script to another
sprite.

Further as shown in Fig. 10, she sometimes seemed to be a bit
confused about structures. With this code, she wanted to ask the
user something and use the answer for the further program se-
quence. But she did not succeed with this. In the resulting project
there is this construct with if_then, answer and _=_ included, but
it does not work. After Charlotte couldn’t solve this problem, she
ignored it. Another interesting feature is that she edited blocks
(especially say_for_secs) often before she added them (Fig. 8).

Alex

 Figure

 x

 Dee

…

 Dog puppy

 …

 Basketball

 …

 Adrian

 …

 Ruby

 …

 …

 Tennis ball

 …

 +

 +

 +

 …

 +

 …

…

…

…

+

+

 +

 +

 …

 …

 x

 Soccer ball

 x

…

Figure 8: Development Diagram for step 1 to 39 of Charlotte
(Student 2)

7 DISCUSSION
After analyzing the results, we found that the working processes
between the two students differ at some points (Section 6). Oliver
(Student 1) realized exact the program, what he described to do
at the beginning of course day 3. Instead, Charlotte, Student 2,
programmed a completely different project than she intended to do.
The first student in our example worked in a very straightforward
way. He added a block and went on with the next step. He rarely
moved back to a block and edited a block again after many other
steps. Charlotte used a lot of time at the beginning of each program
to create the scene and rearranged elements often.

With the use of the diagrams, we found important points in the
programming processes of the children. Fig. 9 shows such a point
for Oliver. He added the same block touching to the sprite "Football
player" many times, edited it, moved it and deleted it. This shows an
irregularity in his behavior. By analyzing the development diagram
(Fig. 7) of the boy, we found that he deleted some sprites without
any obvious reason. Further, he sometimes added the same sprites
again after removing them. Charlotte paid great attention to the
overall picture of her project. As one can see in Fig. 8, she edited
sprites almost every time after adding them to the project. After
adding a new block, she looked up all other blocks, whether they
still fit in the project. This can be observed in the diagrams as often
changes of the current edited sprites. After she couldn’t solve a
problem in her program, she ignored it. There are many possible
reasons for such differences. Firstly, this could be influenced by
personal characteristics of the students and maybe our results show

WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk Alexandra Simon, Katharina Geldreich, Peter Hubwieser

Football player

 +

 +

 +

+

 >

 +

 >

 +

 x

 x

 +

 …

Figure 9: Sprite Diagram for sprite Football player of Oliver (Student 1)

the typical working method of the two children. Further, we have
to take into account that the students could be affected by their
neighbors, for example. To determine this, we have to include the
video recordings of the course day in our analysis.

Due to the small number of students, we presented in this work,
it is not possible to make general statements and assumptions for
all participants of our courses. But this use-case analysis is a first
step towards a better understanding of the programming processes
of primary school children.

Our analysis showed, that the developed category system (see
Section 4.1) is sufficient for this kind of process analysis and our
research questions. Currently, there is no need for further adap-
tions of the system. The visualization combined with the screen
recordings can confirm the initial assumption about an interesting
position in the programming process. Further, this combination can
help to understand - the students’ challenges at this point. With
the usage of both methods, we find for example the deviation in
Oliver’s programming process as shown in Fig. 9. It is true that the
visualizations always show only a certain section of the processes
and never contain all the information. But this is an intentional
reduction of information. While the development diagram shows
the chronological development process of all sprites in a project,
the sprite diagram describes the programming of exactly one sprite.

Both diagrams have their advantages and it is appropriate in an
analysis process to use both types in parallel.

8 CONCLUSION
With the developed diagram types, it is easily possible to find impor-
tant points in the programming processes of the students. Although
we show only the results of two children in detail. From four courses
in 2016, we obtained screen captures of 37 children. Sometimes we
faced technical challenges so that it was not possible to capture the
screens of all students. These screen captures are currently coded.
Based on this work and the created visualizations, we will develop
a system for the automated generation of the visualizations from a
list of codes. Afterwards, the visualizations will be automatically
generated and analyzed. This can be applied to the other screen
recordings for a quantitative evaluation. One goal of this is to find
out if we can distinguish different programming types between
the students, the classes or specific groups of children. We think
that the visualizations together with screen captures and video
recordings will play an important role in this step. The findings
will be useful for teacher education and as a tool for teachers in
class to understand the programming process of their students. In
a previous work of ours [9] we found that the children created
three project types in particular: Story, Game, and Animation. We

How to Transform Programming Processes to Graphical Visualizations WiPSCE’19, October 23–25, 2019, Glasgow, Scotland Uk

=

=

=

=

Dee

…

 +

 +

+

 +

 >

 …

 >

 …

 +

 >

 >

>

 >

 >

Figure 10: Sprite Diagram for sprite Dee of Charlotte (Stu-
dent 2)

wonder if the project type relates to the programming process and
the other way around. Furthermore, we will try to find connections
between each part of the analysis: video, screen captures and the
analysis of the Scratch projects.

REFERENCES
[1] M. Armoni and J. Gal-Ezer. Early computing education. ACM Inroads, 5(4):54–59,

2014.
[2] T. Bell, I. H. Witten, and M. Fellows. CS Unplugged: An enrichment and extension

programme for primary-aged students. 3rd edition, 2015.
[3] R. L. Brennan and D. J. Prediger. Coefficient Kappa: Some Uses, Misuses, and

Alternatives. Educational and Psychological Measurement, 41(3):687–699, 1981.
[4] N. C. C. Brown, S. Sentance, T. Crick, and S. Humphreys. Restart: the resurgence

of computer science in UK schools. ACM Transactions on Computing Education,
14(2):1–22, 2014.

[5] C. Duncan and T. Bell. A Pilot Computer Science and Programming Course for
Primary School Students. In the Workshop in Primary and Secondary Computing
Education, pages 39–48, 2016.

[6] C. Duncan, T. Bell, and S. Tanimoto. Should your 8-year-old learn coding? In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education,
WiPSCE ’14, pages 60–69, New York, NY, USA, 2014. ACM.

[7] K. Falkner, R. Vivian, and N. Falkner. The Australian Digital Technologies Cur-
riculum: Challenge and Opportunity. In Proceedings of the Sixteenth Australasian
Computing Education Conference - Volume 148, ACE ’14, pages 3–12, Darlinghurst,
Australia, Australia, 2014. Australian Computer Society, Inc.

[8] A. Funke, M. Berges, and P. Hubwieser. Different Perceptions of Computer
Science. In 2016 International Conference on Learning and Teaching in Computing

and Engineering (LaTICE), pages 14–18. IEEE, 2016.
[9] A. Funke, K. Geldreich, and P. Hubwieser. Analysis of Scratch Projects of an

Introductory Programming Course for Primary School Students. In Proceedings
of the 2017 IEEE Global Engineering Education Conference (EDUCON), pages xx –
xx. IEEE, 2017.

[10] K. Geldreich, A. Funke, and P. Hubwieser. A Programming Circus for Primary
Schools. In Proceedings of the 9th International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives, pages 46–47. 2016.

[11] B. Imler andM. Eichelberger. Using screen capture to study user research behavior.
Library Hi Tech, 29(3):446–454, 2011.

[12] M. Khan and S. S. Khan. Article: Data and information visualization methods, and
interactive mechanisms: A survey. International Journal of Computer Applications,
34(1):1–14, November 2011.

[13] J. R. Landis and G. G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159–174, 1977.

[14] R. Lengler and M. J. Eppler. Towards a periodic table of visualization methods of
management. In Proceedings of the IASTED International Conference on Graphics
and Visualization in Engineering, GVE ’07, pages 83–88, Anaheim, CA, USA, 2007.
ACTA Press.

[15] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The Scratch
Programming Language and Environment. ACM Transactions on Computing
Education, 10(4):1–15, 2010.

[16] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari. Habits of programming in
scratch. In Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education, ITiCSE ’11, pages 168–172, New York,
NY, USA, 2011. ACM.

[17] K. Prottsman. Computer science for the elementary classroom. ACM Inroads,
5(4):60–63, 2014.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. Pearson Higher Education, 2004.

[19] J. C. Tang, S. B. Liu, M. Muller, J. Lin, and C. Drews. Unobtrusive but invasive:
Using screen recording to collect field data on computer-mediated interaction.
In Proceedings of the 2006 20th Anniversary Conference on Computer Supported
Cooperative Work, CSCW ’06, pages 479–482, New York, NY, USA, 2006. ACM.

[20] H. Topi. Gender imbalance in computing. ACM Inroads, 6(4):22–23, 2015.
[21] J. Tsan, K. E. Boyer, and C. F. Lynch. How Early Does the CS Gender Gap Emerge?

In the 47th ACM Technical Symposium, pages 388–393, 2016.
[22] A. von Eye. An Alternative to Cohen’s . European Psychologist, 11(1):12–24, 2006.

	Abstract
	1 Introduction
	2 Related Work and Theoretical Background
	2.1 CS courses for primary school students
	2.2 Usage and analysis of screen recordings
	2.3 Visualization of (programming) processes
	2.4 Habits of programming

	3 Design of the Course
	4 Methodology
	4.1 Category system and coding process
	4.2 Visualization
	4.3 Development diagram
	4.4 Sprite diagram

	5 Application
	6 Results
	6.1 Student 1 - Oliver
	6.2 Student 2 - Charlotte

	7 Discussion
	8 Conclusion
	References

