
Computational Thinking as Springboard for Learning

Object-Oriented Programming in an Interactive MOOC

Johannes Krugel

School of Education

Technical University of Munich

Munich, Germany

johannes.krugel@tum.de

Peter Hubwieser

School of Education

Technical University of Munich

Munich, Germany

peter.hubwieser@tum.de

Abstract — The prerequisite knowledge regarding Computer

Science (CS) varies strongly among freshmen at university and it

seems advisable to compensate for these differences before the

first lecture starts. Massive open online courses (MOOCs) might

represent a possible solution. We therefore designed and

developed a MOOC (called “LOOP: Learning Object-Oriented

Programming”) which provides a gentle introduction to

computational thinking and object-oriented concepts before the

programming part. In addition to the common quizzes, we

developed various we-based interactive exercises to enable the

learners to experiment and interact directly with the presented

concepts. Furthermore, we implemented programming exercises

with constructive feedback for the learners using a web-based

integrated development environment and additionally an

automatic grading system. The target group of the course are

prospective students of science or engineering that are due to

attend CS lessons in their first terms. The course was conducted

as a prototype with a limited number of participants. In a

concluding survey, the participants submitted textual feedback

on the course; some of them proposed specific improvements for

the employed interactive exercises. Yet, the overall feedback was

encouragingly positive. In this paper, we describe the design and

the development of the course, as well as our initial results.

Keywords — Computer science education; Courseware;

Education courses; Educational technology; Electronic learning;

Self-study courses; STEM

I. INTRODUCTION

Due to the absence of systematic Computer Science (CS)
education in many countries, the prerequisite knowledge of
freshmen at universities varies considerably, depending on
their prior engagement in CS, the country or state where they
graduated from school, or on the school branch they have
attended [1]. We performed a survey in a CS1 lecture at our
university in October 2015 using a limited version of the
MoKoM instrument [2] to test the competencies in object-
oriented programming (as proposed, e. g., by [3]). The results
of the 874 participants revealed huge differences in the
students’ prior knowledge. It is very difficult for CS lecturers
of the first terms to handle this diversity, in particular regarding
programming abilities.

Thus, it seems advisable to compensate for or reduce these
differences in knowledge before the first lectures starts. As the
students cannot be expected to be present at university at this
time, MOOCs (massive open online courses) seem to represent

a potential solution since the learners can take the course
independently of location and time. At the same time, as
learning to program is a substantial cognitive challenge [4],
such MOOCs run in the risk of overstraining the students,
frustrating them prior to the beginning of their studies.

To avoid this danger, we designed a MOOC (called
“LOOP: Learning Object-Oriented Programming”) that starts
which provides a gentle introduction to computational thinking
[5] and object-oriented concepts before the programming part
to avoid excessive cognitive load (following the concept
“objects strictly first” [6]). In addition to the common quizzes
giving direct feedback to the learners, we included “really”
interactive tasks for every learning step. Special care was
devoted to the selection and development of those interactive
exercises to enable the learners to experiment and interact
directly with the presented concepts. It can be a major obstacle
for potential participants having to install special software [7,
8], which is especially problematic in an online setting without
a teacher who could help in person. We therefore decided to
use only purely web-based tools. The target group of the course
are prospective students of science or engineering that are due
to attend CS lessons in their first terms.

In this paper, we describe related courses (Section II), the
design and development of our course (Section III), its
conduction (Section IV), our initial results and experiences
(Section V), and conclude with a discussion (Section VI).

II. RELATED COURSES

There are many online courses for learning the basics of
computer science. In the following, we provide a short
overview of some introductory MOOCs and SPOCs (small
private online courses) that explicitly cover computational
thinking or object-oriented programming (OOP) and that were
recently published in the scientific literature.

Liyanagunawardena et al. [8] describe the experiences with
a MOOC for the introduction to programming where the
learners have the opportunity to build an Android game. They
report on a good community experience, but, they note that one
barrier for the learners was to install the development software.

Piccioni et al. [9] describe a SPOC used to complement an
existing course for the introduction to programming. As a
gamification element, badges are awarded to learners.

Falkner et al. [7] developed a MOOC in which the
participants learn programming by producing digital artwork.

© IEEE, 2017. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. Not for
redistribution. The definitive version was published in IEEE Global Engineering Education Conference (EDUCON), April 2017

Alario et al. [10] developed a MOOC with interactive
exercises using, among others, the software Greenfoot [11].

III. COURSE DESIGN

LOOP was developed on the MOOC platform edX Edge1 in
German. In this section, we describe the contents and didactical
considerations of the course design, followed by a discussion
of the course elements.

A. Course content

In principle, LOOP has a similar content structure as the CS
course in grade 10 of Bavarian Gymnasiums (in a reduced
form), which is described in detail in [12]. It follows the
“objects first” approach that was introduced as a reaction to
problems students faced in writing their first object-oriented
programs [13].

Computational thinking (CT) as introduced by Wing [5] is
a universal personal ability that can be used in many
disciplines. Since the target group of our course comes from
various different fields of study, we incorporated CT as integral
part of the course. CT is on the one hand intended to facilitate
learning programming and on the other hand a sustainable
competency that can be used also outside of our course.

As pointed out in [4], there is a fundamental didactical
dilemma in teaching OOP: On the one hand, modern teaching
approaches postulate to teach in a “real life” context [14], i. e.,
to pose authentic problems to the students. Therefore, it seems
advisable to start with interesting, sufficiently complex tasks
that convince the students that the concepts they have to learn
are helpful in their professional life. However, if we start with
such problems, we might ask too much from the students,
because they will have to learn an enormous number of new,
partly very difficult concepts at once [4].

Following a “strictly objects first” approach [6], we solved
this problem by distributing the learning objectives over the
parts of the course that precede the “serious” programming part
and thereby avoiding confronting the learners with too many
unknown concepts when they have to write their first program.
Basically, we suggest to the students to look at an object as a
state machine [4]. In order to realize this in a learner-oriented
way, the students need to be able to understand a simulation
program of a typical state machine, e. g., a traffic light system.

Before introducing a textual programming language, we
introduce the structure of algorithms and use a block-based
programming language to reduce the cognitive load [11]. We
also try to reduce the cognitive load when actually introducing
Java and, e. g., initially hide “advanced” aspects (like access
modifiers) to let the learners focus on the essential parts of the
class definitions. LOOP consists of the following five chapters:

1. Object-oriented modeling
2. Algorithms
3. Object-oriented programming
4. Implementing algorithms and arrays
5. Associations and references

B. Videos

All topics of the course are presented in short videos with
an average length of 5 minutes. The videos were produced

based on the suggestions of [15] and similar to the suggestions
by [16] published shortly after our recording.

Each of the 24 videos begins with a short advance organizer
to help the learners focus on the relevant aspects. This is
augmented with the talking head of the respective instructor
(using chroma key compositing) facilitating the learners to
establish a personal and emotional connection [16]. For
recording, we used the software Blackmagic Media Express.

For the actual content of the videos, we decided to use a
combination of slides and tablet drawing. The background of
the video consists of presentation slides and the instructor uses
a tablet to draw and develop additional aspects or to highlight
important part of the slides (“Khan-style”). This turned out to
yield quite engaging videos with a reasonable effort for
preparing and recording. As software tools we used Camtasia
Recorder and Camtasia Studio. All slides are provided for
download and we additionally added transcripts for the videos.
By such video, audio, and textual representations, several
senses are addressed simultaneously, making the content
accessible to learners with different learning preferences or
impairments.

C. Quizzes

After each video, the course contains quizzes as formative
assessment. The main purpose is to provide the learners with
direct and instant feedback on the learning progress. The
quizzes use the standard assessment types offered by the
MOOC platform, e. g., single- / multiple-choice questions, drop-
down lists, drag-and-drop problems or text input problems.
Depending on the answer, the learner gets a positive feedback
or for example hints which previous parts of the course to
repeat in more detail.

D. Interactive exercises

The videos introduce new concepts to the learners and the
quizzes test the progress, which is, however, in general not
sufficient to acquire practical competencies [10]. Following a
rather constructivist approach, we let the learners experiment
and interact with the concepts directly. Considering that, we
include interactive exercises or programming task for all
learning steps throughout the course. There are already many
web-based tools for fostering computational thinking and
learning OOP concepts available on the web. We selected the
in our view most suitable tools supporting the intended
learning goals and integrated them into our course. Where
necessary we adapted or extended them to meet our needs.

Following the concept objects strictly first and to acquaint
the learners with the notion of objects, we included the web-
based vector graphic drawing tool SVG-edit 2. The learners are
given the task of drawing a simple graphic using rectangles,
circles and lines which implicitly also already introduces the
idea of classes. The learners are then asked to publish their
drawing in the discussion forum of the course and to introduce
themselves to the community.

To let the learners experience that objects have a state, that
the state can change, and that this is usually achieved by
method calls we developed a new interactive exercise. The
learners can draw a picture by using simple commands in a
restricted pseudo programming language, which only allows

2 https://github.com/SVG-Edit 3 https://trinket.io 1 https://edge.edx.org (date of last access for all URLs: 2017-02-02)

https://github.com/SVG-Edit
https://trinket.io/
https://edge.edx.org/

the creation of graphical objects and method calls. We
therefore combined the tool trinket 3 (providing an online code
editor connected to a canvas) and the JavaScript library
SVG.JS 4 (providing an interface for drawing objects). We
adapted and extended this such that the learners can inspect the
drawn objects by showing the UML object diagram when
hovering over an object. We prompted the learners to draw an
animal or a cartoon figure and to share it in the discussion
forum.

Enabling the learners to interact with and to visualize
simple algorithms we integrated the geometric JavaScript
framework CindyJS 5 [17]. As example, we use the Euclidian
algorithm for calculating the greatest common divisor of two
numbers. The learner can modify the input by moving a point
in the plane and observe at the same time the steps of the
algorithm.

To facilitate the understanding for the structure of
algorithms we included a gamification element using block-
based programming. We integrated a series of maze riddles
from Blockly-Games 6, which can be solved by combining
move-operations with structural elements like loops and
conditional statements.

Syntax can be a major obstacle when learning to program
[11]. We therefore tried to make the first steps easier by
providing a gentle introduction. Before the learners start to
implement their first Java class from scratch, we let them
experience the connection between the UML class diagram and
the corresponding Java implementation using the web-based
tool UmpleOnline 7 [18]. This tool enables the learner to
modify a class diagram and simultaneously observe the
changes in the Java implementation and the other way around.

For visualizing the execution of a program, we chose to use
the tool Java-Tutor 8 (based on the very similar Python-Tutor)
[19]. The learners can run a program step-by-step with the
possibility to navigate forward and backward while observing
the control flow. It also includes a graphical representation of
the memory contents, supporting the understanding of related
concepts such as, e. g., references.

E. Programming exercises

While in several introductory CS MOOCs the learners have
to install an integrated development environment (IDE) for
writing their first computer programs, we decided to rely on
web-based tool also for this purpose (like [9]). We chose to use
Codeboard 9 [20] (among several alternatives [21–23]) because
of the usability and seamless integration into the edX platform
using the Learning Tools Interoperability (LTI) standard.

The programming assignments are graded automatically
and the main purpose is to provide helpful feedback to the
learner. We therefore implemented tests for each assignment
that make heavy use of the Java reflection functionality. While
standard unit tests would fail with a compile error if, e. g., an
attribute is missing or spelled differently. Reflection makes it
possible to determine for a learner’s submission if, e. g., all
attributes and methods are defined with the correct names,

types and parameters. Writing the tests requires more effort
than for standard unit tests but can give more detailed feedback
for the learners in case of mistakes.

Additionally we integrated the automatic grading and
feedback system JACK [24] using the external grader interface
of the edX platform. Apart from static and dynamic tests,
JACK also offers the generation and comparison of traces and
visualization of object structures; however, we do not use this
extended functionality yet.

IV. CONDUCT OF THE COURSE

We prepared the course on the platform edX Edge and
conducted it during the summer holidays 2016 with a limited
number of participants as prototype for a MOOC. The course
was announced only internally at our university as preparation
course for CS basics. Participation was voluntary and did not
count towards a grade but we announced to issue informal
certificates for successful participation (= obtaining at least
50 % of the possible points in at least 12 of 16 course units).

In an introductory online questionnaire, we asked the
participants about their gender, major, and previous
programming experience. Additionally we asked about the
intentions to complete the course, providing four options (see
TABLE I).

The course took five weeks (one week for each chapter)
and the targeted workload of the learners was 10 hours per
week. The communication among the learners and with the
instructors took place entirely in the discussion forum. The
main task of the instructor during the conduction of the course
was to monitor the forum and to react accordingly, e. g.,
answer questions or fix problems with the grading system.

In a concluding online questionnaire distributed after the
course, we asked for positive and negative textual feedback
regarding the course.

V. FIRST RESULTS

The course attracted 187 registrations. For the introductory
questionnaire, we received 77 responses (female: 21, male: 52
male, no answer: 4) with a very diverse study background (33
different majors, including, e. g., Biology, Business studies,
Engineering, and Mathematics). Regarding programming, 10
participants had no experience, 35 had basic knowledge, and
27 participants had already written a “bigger” program of at
least 100 lines of code (no answer: 5 participants).

The discussion forum contained in total 178 posts at the end
of the course. However, there was not a lot of discussion and
communication among the participants themselves and most
posts were answers to the exercises as required by the
assignments (see Section III.D). This is presumably also
because we did not actively focus on initiating lively
discussions in this prototypical conduction of the course.

From the 77 responses of the introductory questionnaire, 41
stated that they want to complete most topics or the whole
course (see TABLE I). In general, MOOCs have a rather high
dropout [8, 25, 26]. At the end of the course, we were happy
that 40 participants gained the course certificate (however, not
necessarily the same learners as the 41 from the questionnaire).

4 http://svgjs.com 5 http://cindyjs.org

6 https://blockly-games.appspot.com 7 http://try.umple.org

8 http://www.pythontutor.com/java.html 9 https://codeboard.io

9 https://codeboard.io

http://svgjs.com/
http://cindyjs.org/
https://blockly-games.appspot.com/
http://try.umple.org/
http://www.pythontutor.com/java.html
https://codeboard.io/
https://codeboard.io/

TABLE I. INTENTIONS TO COMPLETE THE COURSE

Option Answers

I just want to have a look at the course. 14

I want to study some topics that are relevant for me. 18

I want to study most topics of the course. 12

I want to complete the whole course. 29

(No answer) 4

Total 77

In the concluding survey distributed after the course, we
received 11 answers. The participants proposed specific
improvements for the employed interactive exercises, among
others to use a more user-friendly web-based drawing tool (or
to additionally allow the use of offline software) and to include
more difficult exercises. Yet, the overall feedback was
encouragingly positive. The learners stated to like the videos,
the explanations, the interactive exercises and the overall
alignment of the course elements.

VI. DISCUSSION

Based on the experiences with our course LOOP, carefully
designed MOOCs seem to be a possibility to reduce the
differences in the CS-related prerequisite knowledge of
freshmen at university. The advantages of e-learning in
general, and the use of interactive exercises in particular, are
approved by the learners. Especially in computer science, it
seems in many cases possible to rely the education on web-
based tools, without the need to install further software on the
learners’ computers.

So far, we focused mostly on the design and creation of the
material and the exercises. In the future, we plan to lay the
focus more on the communication aspects and to incorporate
also collaborative elements and peer-grading. We are going to
offer the course as a MOOC and aim to evaluate the learning
processes by mining all data produced by the students. We
furthermore plan to measure the effect on the previous
knowledge of the freshmen.

ACKNOWLEDGMENT

We thank Alexandra Funke and Marc Berges for
developing parts of the course and Elias Hoffmann, Elisabeth
Eichholz, and Simon Zettler for testing and evaluating a
preliminary version of the course. We furthermore thank the
anonymous referees for helping to improve the paper.

REFERENCES

[1] P. Hubwieser et al., “A global snapshot of computer science education

in K-12 schools,” in ITiCSE Working Group Reports, New York, NY,
USA: ACM, 2015, pp. 65–83.

[2] B. Linck et al., “Competence model for informatics modelling and

system comprehension,” in IEEE Global Engineering Education

Conference (EDUCON'13), 2013, pp. 85–93.

[3] W. Hering et al., “On benefits of interactive online learning in higher

distance education,” in 6th International Conference on Mobile, Hybrid,
and On-line Learning (eLmL'14), 2014, pp. 57–62.

[4] P. Hubwieser, “Analysis of learning objectives in object oriented

programming,” in Informatics Education: Supporting Computational
Thinking, 3rd International Conference on Informatics in Secondary

Schools - Evolution and Perspectives (ISSEP'08): Springer, 2008, pp.

142–150.

[5] J. Wing, “Computational Thinking,” Communications of the ACM, vol.

49, no. 3, pp. 33–35, 2006.
[6] D. Gries, “A principled approach to teaching OO first,” ACM SIGCSE

Bulletin, vol. 40, no. 1, p. 31, 2008.

[7] K. Falkner, N. Falkner, C. Szabo, and R. Vivian, “Applying validated
pedagogy to MOOCs,” in ACM Conference on Innovation and

Technology in Computer Science Education (ITiCSE'16), New York,

NY, USA: ACM, 2016, pp. 326–331.
[8] T. R. Liyanagunawardena, K. O. Lundqvist, L. Micallef, and S. A.

Williams, “Teaching programming to beginners in a massive open

online course,” in Building Communities of Open Practice (OER'14),
2014, pp. 1–7.

[9] M. Piccioni, C. Estler, and B. Meyer, “SPOC-supported introduction to

programming,” in Innovation & Technology in Computer Science
Education (ITiCSE'14), 2014, pp. 3–8.

[10] C. Alario-Hoyos et al., “Interactive activities: the key to learning

programming with MOOCs,” in European Stakeholder Summit on
experiences and best practices in and around MOOCs (EMOOCS'16),

Norderstedt: Books on Demand, 2016.

[11] M. Kölling, “The Greenfoot Programming Environment,” ACM
Transactions on Computing Education, vol. 10, no. 4, pp. 1–21, 2010.

[12] P. Hubwieser, “Computer science education in secondary schools – The

introduction of a new compulsory subject,” ACM Transactions on

Computing Education, vol. 12, no. 4, pp. 1–41, 2012.

[13] S. Cooper, W. Dann, and R. Pausch, “Teaching objects-first in

introductory computer science,” in 34th Technical Symposium on
Computer Science Education (SIGCSE'03), New York, NY, USA:

ACM, 2003, p. 191.
[14] S. Cooper and S. Cunningham, “Teaching computer science in context,”

ACM Inroads, vol. 1, no. 1, p. 5, 2010.

[15] P. J. Guo, J. Kim, and R. Rubin, “How video production affects student
engagement,” in 1st ACM Conference on Learning@Scale (L@S'14),

New York: ACM, 2014, pp. 41–50.

[16] M. Alonso-Ramos et al., “Computer science MOOCs: A methodology
for the recording of videos,” in IEEE Global Engineering Education

Conference (EDUCON'16), 2016, pp. 1115–1121.

[17] M. von Gagern, U. Kortenkamp, J. Richter-Gebert, and M. Strobel,
“CindyJS,” in 5th International Congress on Mathematical Software

(ICMS'16), Cham: Springer New York Inc., 2016, pp. 319–326.

[18] T. C. Lethbridge, “Teaching modeling using Umple: Principles for the
development of an effective tool,” in IEEE 27th Conference on Software

Engineering Education and Training (CSEE&T), 2014, pp. 23–28.

[19] P. J. Guo, “Online Python Tutor,” in 44th ACM Technical Symposium on
Computer Science Education (SIGCSE'13), 2013, p. 579.

[20] H.-C. Estler and M. Nordio, Codeboard. [Online] Available:

http://codeboard.io/. Accessed on: Dec. 01 2016.
[21] T. Staubitz, H. Klement, R. Teusner, J. Renz, and C. Meinel,

“CodeOcean - A versatile platform for practical programming excercises

in online environments,” in IEEE Global Engineering Education
Conference (EDUCON'16), 2016, pp. 314–323.

[22] G. Derval, A. Gego, P. Reinbold, B. Frantzen, and P. van Roy,

“Automatic grading of programming exercises in a MOOC using the
INGInious platform,” in European Stakeholder Summit on experiences

and best practices in and around MOOCs (EMOOCS'15), 2015, pp. 86–

91.
[23] I. Skoric, B. Pein, and T. Orehovacki, “Selecting the most appropriate

web IDE for learning programming using AHP,” in 39th International

Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO'16): IEEE, 2016, pp. 877–882.

[24] M. Striewe and M. Goedicke, “JACK revisited: Scaling up in multiple

dimensions,” in 8th European Conference, on Technology Enhanced
Learning (EC-TEL'13): Scaling up Learning for Sustained Impact,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 635–636.

[25] C. Delgado Kloos et al., “Experiences of running MOOCs and SPOCs at
UC3M,” in IEEE Global Engineering Education Conference

(EDUCON'14), 2014, pp. 884–891.

[26] F. Garcia et al., “A practice-based MOOC for learning electronics,” in
IEEE Global Engineering Education Conference (EDUCON'14), 2014,

pp. 969–974.

