
Analysis of Scratch Projects of an Introductory

Programming Course for Primary School Students

Alexandra Funke, Katharina Geldreich, Peter Hubwieser

Technical University of Munich

TUM School of Education

Munich, Germany

{alexandra.funke, katharina.geldreich, peter.hubwieser}@tum.de

Abstract—Computer Science (CS) is increasingly entering the

early levels of early childhood education, like primary school or

even kindergarten. Therefore, it becomes more and more

important to gain insight into which teaching methods and content

would be appropriate for young students of primary levels. To

investigate this, we have designed a specific three-day introductory

programming course for 4th grade students (ages 9 - 10), which

was taught four times up to now. Fifty-eight children (26 girls and

32 boys) participated in the courses from May to August 2016. At

the end of the courses, the children have developed 127 Scratch

projects during the course. The methodology and the results of the

qualitative analysis are described in this paper. We discovered

that the students created three different types of programs in

particular: Stories, Animations, and Games. The level of

understanding of the students, who programmed a Game, was

mostly found to be advanced. Stories, on the other hand, reached

only the two basic levels. Most of the students met the

requirements we had set for the projects.

Keywords—computer science education; primary school;

primary education; scratch; programming

I. INTRODUCTION

Computer Science has to overcome several challenges.
Schools and universities are confronted with different
misconceptions and prejudices towards CS [6] which manifest
themselves from an early age [8]. In order to prevent students
from developing negative attitudes, one approach is to introduce
Computer Science concepts like programming already in
primary school to provide opportunities for making experiences
with technology and CS. Children should learn that they can use
computers not only as users but also as creators [2]. This role
change combined with a fun experience of programming could
increase their self-confidence towards CS in particular and
technology in general [9]. At the same time, the discussion about
the necessity of computer science and programming in
childhood education is growing steadily [9]. While several
countries have already introduced CS in their primary school
curricula (e.g. the UK [12] and Australia [13]), Germany has not
yet developed mandatory guidelines for how to deal with the
new topics.

To find out which teaching methods and content would be
appropriate for German primary schools, we designed an
introductory programming course for fourth graders. Although a
predominant goal of the course was to change the students’
attitudes towards CS, we also wanted to gain insight into how

profoundly they can learn several programming concepts.
According to this, two of our research questions were

• What are the learning outcomes of the programming
course?

• Which programming concepts do children use in their
programming projects?

This work is structured as follows: First, we discuss some
background work regarding Computer Science courses for
primary school students, especially programming courses. In
addition, we provide a short overview of the design of our
programming course. This is followed by a description of the
methodology and analysis. In order to illustrate the qualitative
analysis of the programming results, we present three project
examples from our courses. Then, the results are presented with
a discussion of the findings. The paper closes with a summary of
the findings and an outlook for further work.

II. RELATED WORK AND THEORETICAL BACKGROUND

In recent years, a variety of courses have been developed to
expose children to Computer Science concepts. Amongst others,
various courses set their focus on programming. Tsan et al. [1]
implemented an in-school computer science course for 5th grade
students. They co-designed it with a primary school teacher who
had prior knowledge in technology but no general CS
background. The course was taught in 30-hours during a regular
school year. In order to analyze the effectiveness of this
collaboratively developed curriculum, the researchers collected
data with interviews before and after the course, made videos of
the students working, made screen recordings and collected
student-created materials like short essays and storyboards.
During the class, the students completed two programming
projects with Scratch and almost all of them worked in pairs (18
pairs in total). The authors found that female-female pairs
worked very well together and were creative. However, their
products missed many requirements. For example, a male-male
pair had a keen interest in and enthusiasm for programming.
They tried out many things on their own and had a similar line
of thinking. Nevertheless, the boys’ products received low
scores for usability and consistency. In their summary, the
authors listed critical observations for future courses. One key
finding from this research is the usefulness of supportive,
collaborative work.

Programming is also an important part of the CS courses in
the work of Duncan and Bell [20]. They described an example

© IEEE, 2017. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. Not for

redistribution. The definitive version was published in Global Engineering Education Conference (EDUCON), 2017 IEEE

https://doi.org/10.1109/EDUCON.2017.7943005

of a computer science course for primary school students. The
authors implemented a CS class, which took place an hour a
week during a school year. More than 600 students aged between
5 and 12 were taught during the study. The main goals of the
course were that the students engage with the presented content
and enjoy the classes. Furthermore, rather than learning to apply
any specific programming language, the students were to
become familiar with the basic principles of programming.
During these courses, the students worked with the
programming language Scratch and had to solve two main
programming quizzes at the end. After analyzing the results, the
researchers found no statistically significant difference between
the average achievements of the participating girls and boys.
However, girls were not as good as boys at predicting their
capabilities. Despite doing as well as the boys, they did not seem
to be aware of this. Girls needed more encouragement to try out
new activities while the boys often followed a more
experimental approach and tried out more on their own. In
summary, most of the kids enjoyed using Scratch and wanted to
continue learning about CS and programming.

To get insight into the learning outcomes of the students, the
programming results have to be evaluated based on objective
criteria. The authors of [19] carried out a general evaluation of
programming results within a programming course for middle
school students. The aim of this course was to help them develop
computational thinking by programming computer games. In
[19] they described the students’ programming strategies and
analyzed the games they developed. During one course with girls
only, 108 games were developed using the software Stagecast
Creator. Each game was coded within three main categories:
Programming, Documenting & Understanding Code, and
Designing for Usability, as well as within 24 subcategories. The
authors described their coding system with the claim that it “can
be adapted for use with any of the programming environments
targeted at younger populations." Following this advice, several
other research groups used this category system as a basis for
coding programming results. An analysis of programming
projects made by primary school students is presented in [11].
The authors developed a coding scheme to evaluate games made
by children at the primary level using Scratch to show which
programming skills they used. During the course with 60
participants, small groups of children developed 29 games. For
coding the programming results, the authors refined the category
system described in this section and extended it with the
programming concepts that could be learned with Scratch [16].
Each game was then coded with the refined coding system,
which consists of three main categories (Programming
Concepts, Code Organization and Designing for Usability) and
22 subcategories.

Another approach to classify programming results is
described in [9]. The authors of this work used SOLO (Structure
of the Observed Learning Outcome) taxonomy [14] for
developing a specific code system for programming projects.
According to the five levels of increasing complexity of
programs, Lister et al. defined the categories. Level 1
Prestructural is used when the programming code substantially
lacks knowledge of programming constructs or is unrelated to
the question. If the code represents a direct translation of the
specification, it is coded as Unistructural (L2). For

Multistructural (L3) the code has to represent a translation that
is close to direct. In this level, the programming code may have
been reordered to make a more integrated, valid solution. If the
code provides a well-structured program that removes all
redundancy and has a clear, logical structure, it is coded with
Relational (L4). The highest level Extended Abstract (L5) can
be reached if the code uses constructs beyond those required in
the exercise to provide an improved solution.

In [10] this extended SOLO code system is used to classify
the Scratch programs of primary school students. They provided
specific examples for the first three levels adapted to an exercise
during their courses. The authors found that the students’
understanding varied between schools and depended, among
other things, on the students’ performance in school. Though
some students reached level 4 of the system, they struggled to
synchronize costume changes within conversations of their
sprites.

III. DESIGN OF THE COURSE

We developed a three-day course for students of the fourth
grade of primary school. As context, we chose “Circus” for all
tasks and materials, out of three reasons. First, we regarded this
as an attractive field of their personal experience. Second, a
circus offers a variety of interesting tasks to simulate the actions
of animals or human beings. Third, we hoped to attract both girls
and boys equally by this metaphor. On each day, we spent four
hours with the kids. Day by day, the students are exposed to a
more and more detailed picture of programming. At the end, we
expected that the children had learned the basic principles of
programming, in particular to work with the programming
environment as well as to apply and combine algorithmic control
structures.

Day 1 Most of the students did not have any previous
knowledge of programming or computer science. Therefore, the
goal of the first day is to give them a basic idea of how a
computer program works. They were to realize that programs
execute a particular task by following precise and clear
instructions. Because we did not want to overstrain the students,
we decided to introduce the basic algorithmic concepts
“unplugged” [5], before any programming. Hence we use social
activities and group problem solving at day one, without actually
working on computers. In order to learn how to split tasks into

Fig. 1. Programming with haptic blocks

Fig. 2. Simulating the execution of a program

smaller parts, we provided a variety of short exercises in
which different activities had to be transformed according to
unambiguous instructions. Afterward, the groups had to work
together to solve a more complex task. To take up the circus
theme, we let the students program each other, solving tasks like
searching for missing items or animals in a circus tent. To
represent the solutions, we use haptic (printed and shrink-
wrapped) Scratch-like programming blocks to prepare “real”
computer programming on day two (Fig. 1, 2).

Day 2 The goal of the second day is to enable the students to
create simple Scratch programs that produce Multimedia output.
To provide a child-friendly programming environment and to
spare the students any unnecessary syntactical overhead, we
decided to use the block-based language Scratch [7]. We created
a learning circle with increasingly difficult stations, which
introduces the core elements of Scratch one by one, leading from
simple sequences to control structures as loops and conditional
statements. In each part of the circle, the students have to solve
tasks that are presented on out-handed instruction sheets. To
support the students' expected variety in knowledge and learning
pace, we prepared additional tasks as well as helpful tips.

Day 3 On the third day, we wanted to find out what the
students had learned and if they could solve more open tasks. In
addition, we wanted to stimulate the children to work creatively
and in a self-directed fashion. Yet, to compare the outcomes, we
set the following “mandatory” requirements for the students’
projects. The programs should a) work on more than one sprite
b) move the sprites during execution c) comprise at least one
iteration and d) include at least one conditional statement. After
meeting these requirements, the students should continue their
programming work without any further guidelines. They were
free to experiment with Scratch, to invent their own circus stories
and implement these. At the end of day three, all programs were
presented in front of the course, and the students had the
opportunity to comment their project.

IV. METHODOLOGY

All courses were taught in German by a female, formally
educated primary school teacher, being a CS researcher, too.

Additionally, a male computer scientist assisted during the
courses.

In May 2016, a pilot study was carried out at a student
research center led by our university. After making
improvements of the tasks, we conducted the course with fourth
grade classes in June and July. The course was held in our
department, where we could provide a consistent setting and
stable technical equipment. Another course followed in August
at the student research center. All sessions were videotaped,
enabling us to analyze all actions and interactions of the students.
At the beginning and at the end of each course day, we conducted
group interviews with the classes. In order to get an idea of the
students’ prior knowledge, as well as their mental image of
programming, we used a variety of interviewing and reflection
methods. In addition, we captured the screens of the student
computers during the programming exercises on days two and
three, to get an image of the students’ working methods. To
collect the students’ Scratch programs, we saved the projects
after the course had ended.

One goal of the study was to examine the structure and
quality of the programs the children created. We also wanted to
find out which programming concepts they applied. In order to
rate the quality of the projects, we developed a specific category
system, by combining, adapting and extending different systems
that were presented and explained in Section II. On the top-level,
we distinguish between the four main categories: A.
Requirements, B. Programming Concepts, C. Code
Organization and D. Operability that are described and
differentiated in the following sections.

A. Requirements

As described in Section III, the student programs should
meet four “mandatory” requirements:

• Several Sprites: Counting all sprites to figure out if more
than one sprite is used.

• Sprite Motion: Sprites should move during program
execution. For this, all blocks of the type Motion were
counted to match them with this category.

• Iteration: An iteration is included, when the students
used forever or repeat blocks.

• Conditional Statement: If a program contains at least
one if _ then or if _ then else block to check for
conditions, we code this as a conditional statement.

B. Programming Concepts

The basic Programming Concepts of the Scratch programs
were coded as follows:

• Sequence: A correct sequence is present when the
program runs in a systematic order. For example, some
students did not pay attention to how the program would
be executed. When they created a conversation,
sometimes all scripts ran at the same time by mistake.

• Variables: Variables can be created within Scratch and
then be used within programs. To code this category, the
variable blocks of Data are counted and matched.

• Lists: Similar to Variables, the list blocks of Data are
counted and matched with this category.

• Event Handling: Responding to events triggered by
either the user or another script. All blocks of the type
Event were counted to match them with this category.

• Threads: If two or more scripts were going to execute at
the same time, we coded this as existent threads.

• Coordination and Synchronization: Checking the
program for all wait _ secs, wait until, when I receive,
broadcast and broadcast _ and wait blocks, for
coordinating the actions of multiple sprites.

• Keyboard Input: Includes the program an ask _ and wait
block, and it provides a keyboard input for users.

• Random Numbers: A random number exists when a pick
random to block could be found in the project.

• Boolean Logic: And, or and not were coded as boolean
logic.

• Dynamic Interaction: The usage of mouse x, mouse y or
loudness is used for dynamic interaction.

C. Code Organization

The organization of the code was categorized by three codes:

• Extraneous Blocks: A block is extraneous if it has no
connection to a script with a starting event.

• Sprite Names: This category codes whether the original
sprite name is overridden or not.

• Variable Names: This category codes whether the name
of a variable is meaningful (e.g. “timer”) or not.

D. Operability

Rating of interaction and functionality:

• Functionality: Whether or not the project performs
correctly when it is started is coded as functionality.

• Sprite Customization: A sprite is customized, if a
predefined sprite is adjusted (e.g. removing an arm) or
if the student created their own sprite (e.g. drawing it).

• Stage Customization: A stage is customized, if a
predefined stage is adjusted (e.g. add a drawing) or if the
student created their own sprite (e.g. drawing it).

• Interactivity: A highly interactive program provides the
user with opportunities to interact with it (e.g. key
control). In contrast, a program with no interactivity is,
for example, a sequence of actions.

• Usability: The project is intuitive, if the user
understands how the program runs with little or no
information. Sometimes programs use unorthodox keys
for controlling the program, like “G”. This is only partly
intuitive for users.

1https://scratch.mit.edu/starter_projects/

• Project Type: We coded the project types Animation,
Game, Interactive Art, Music and Dance, Story and
Video Sensing according to the project designation on
the Scratch web page1. For example, a Story is a
sequence of actions without any user input or control
possibilities.

E. Levels of Understanding

Finally, we analyzed the projects for the level of
understanding with a code system inspired by the works
described in Section II:

• Prestructural (L1): The script contains only a few
blocks. The student does not understand how to extend
the script to a meaningful program.

• Unistructural (L2): The script contains sequences of
actions in a simple way. Control structures are not
contained or they are unrelated.

• Multistructural (L3): The script fulfills all given
requirements and includes a variety of different block
types. The code may have been reorganized to make a
more integrated solution.

• Relational (L4): The script provides a well-structured
program that removes all redundancy and has a clear,
logical structure.

• Extended Abstract (L5): The script uses concepts and
blocks beyond those required in the exercise to provide
an improved solution.

F. Qualitative Analysis

Applying these category systems, two researchers rated 27
(21%) of the primary school student projects from our courses
to assess intercoder agreement and reliability. The two raters did
not know which student created which project or the gender of
the students. In order to get an idea of the accord, the Brennan
coefficient [21] and raw agreement were calculated. Both
resulted in an almost perfect agreement (> 0.81) according to
Landis [23]. The common Cohen and Krippendorff factors are
not applicable, as they require a normal distribution of the coded
cases over the codes [22].

After the coding process, we clustered the projects by the
courses. For each cluster, we studied the results and differences
between them. Three examples of Scratch programs and their
results are presented in the next sections.

V. PROJECT EXAMPLES

In order to illustrate the programs, which were developed
during the last course day, we describe three of them. Because
the students used Scratch in German, the projects were translated
by the authors.

A. Project 1

Figure 3 shows a story about two friends attending a circus show
with seven sprites. Because the theme of the sessions was
Programming Circus, this is a typical storyline in the projects.

Fig. 3. Stage in project 1

Fig. 4. Code for project 1

The student used ten different blocks, a total of 64 blocks. As
shown in the code of Fig. 4, the most commonly used block type
was Look (35 blocks). Thirteen of these blocks were say _ for _
secs. In order to start the scripts the student used when green flag
clicked (3), when _ key pressed (3) and when this sprite clicked
(1). Each sprite was assigned exactly one Event block. To
structure the conversion of the story, the student used 19 wait _
secs.

B. Project 2

Screenshots of the underwater world and the related code
created by a student are illustrated in Fig. 5 and 6. The child used
twelve sprites to build the stage. After starting the project with
15 when green flag clicked blocks, the diver in the orange suit
and the related bubbles move to the right until reaching the edge
(if on edge, bounce). Using twelve repeat blocks, the program
execution has no explicit end. Of the 60 blocks used out of four
block types (Event, Control, Motion, Sound) ten wait _ secs were
used to structure the motion. All other fish and bubble sprites,

Fig. 5. Stage in project 2

Fig. 6. Code for project 2

which are not shown in the code of Fig. 6, included the same
scripts as the illustrated sprites and were left out of the figure for
a better overview. Specific for this Scratch project is the heavy
use of play sound _ until done (10) with the same sound.

C. Project 3

The programming result from a third student is shown in Fig. 7
and 8. A total of 41 blocks were used (13 different blocks). Out
of them, 17 belong to Motion (eight times move _ steps). Even
though the student only used two sprites to develop the small
game, the program reacted to nine Events (seven times when _
key pressed). With six if _ then blocks, the student included
conditional statements. The user can activate a new game round
by pressing the key m. This broadcasts a message that causes that
the sprite to move to the start.

VI. RESULTS

Overall, 58 students took part in the sessions from May to
August 2016 (26 female and 32 male students). Two boys
deleted their programs before we could save them and two other
boys worked together as a team. For this reason, we were only

Fig. 7. Stage in project 3

Fig. 8. Code for project 3

able to use the projects of 28 male students. Altogether, we have
127 individual Scratch projects from day 3 of the course, because
some students created more than one project. The girls created
74 programs and the boys 53. Below, we grouped the sessions in
Summer School Courses, which include the sessions in May and
August during regular school holidays in the student research
center, and Class Courses. This comprised the courses in June
and July with whole 4th grade classes.

A. General Statistics

On the second course day, we introduced 28 different blocks to
the students. Out of the 3,200 blocks used in Scratch projects,
two third were part of the blocks introduced. The programs
comprised 710 sprites all together. Overall, the students used an
average of 25 blocks (median 16) and six sprites (median 4) per
Scratch project. The ten most frequently applied blocks are
shown in Table I. The mostly used blocks were wait _ secs and
when green flag clicked, with about 11 % usage each. Another
common Event for starting a script was when _ key pressed (6.2
%). For creating movements of sprites, the students often used
move _ steps and point in direction. For changing the Look, they
used say for _ secs and hide (the counterpart show was the
eleventh most commonly used block).

TABLE I. TOP TEN BLOCKS APPLIED IN THE SCRATCH PROJECTS

Block Image Absolute

usage

Percentage

of all

blocks

used

wait _ secs 369 11.5 %

when green flag clicked

368 11.5 %

move _ steps 298 9.3 %

say for _ secs 273 8.5 %

when _ key pressed 197 6.2 %

forever

162 5.1 %

repeat

139 4.3 %

hide 115 3.6 %

if _ then

112 3.5 %

point in direction 93 2.6 %

TABLE II. OVERVIEW OF THE PERCENTAGE OF STUDENTS WHO MET THE

MANDATORY REQUIREMENTS

Requirement

(#, term)

Total Summer

School

Courses

Class

Courses

Several Sprites 94 % 100 % 94 %

Sprite Motion 92 % 100 % 89 %

Iteration 81 % 82 % 78 %

Conditional Statement 63 % 76 % 56 %

B. Requirements

Almost all students met the first and second of the mandatory
requirements (Table II). The most frequently missing element
was the Conditional Statement. Twenty students did not use any
appropriate block to solve this. However, iterations were only
missing ten times.

C. Programming Concepts

The programs developed by the students differed strongly in
complexity. Almost all students arranged the blocks in their
projects in a systematic order (90 %) and used at least one event
(93 %). One hundred and two projects (80 %) included more
than two Event blocks. Parallel execution of two independent
scripts was supported by 16 % of all projects. Moreover, 63 %
supported the parallel launching of more than two scripts. Some
subcategories of programming concepts were not included in
any project. The unintegrated concepts were Lists, Boolean
Logic and Dynamic Interaction. Furthermore, only four projects
included variables.

D. Code Organization

No student overrode the names of the sprites. If variables
were defined, the given names were meaningful. Out of all of the
programs produced, only a small number (12 %) included
extraneous blocks.

E. Operability

Eighty percent of the projects were categorized as being
completely functional. Only 11 programs had no function at all.
Most of the students did not customize the sprite (108 projects,
85 %) as well as the stage (112 projects, 88 %). Nearly two thirds
of the projects did not offer any interactive elements to the user,
such as user input or keyboard control to interact with the

TABLE III. PERCENTAGE OF PROJECTS CATEGORIZED BY PROJECT TYPE

Project type Total

Summer

School

Courses

Class

Courses

Animation 32 % 37 % 30 %

Game 17 % 54 % 2 %

Interactive Art 4 % 6 % 3 %

Music and Dance 2 % - 3 %

Stories 45 % 1 % 61 %

Video Sensing - - -

program. Over 80% of the projects were categorized as partly or
completely intuitive, and only 23 projects (18 %) were not
intuitive at all. The distribution of Project Types is presented in
Table VII, which shows that the most frequent project type was
Story with 45 % of all programs. It is followed by Animation (32
%) and Game (17 %). An important observation is that the class
courses produced much more Story-programs. This differs from
the students of the summer school courses who developed more
programs, which were categorized as Game.

F. Levels of Understanding

Almost half of the students reached only the first level of the
adjusted SOLO taxonomy, Prestructural, meaning that students
did not understand how to animate the sprites in a meaningful
and structured way. In some projects, no blocks were used at all.
Level 2 Unistructural was reached in one fourth of the Scratch
projects. First animations and logic were observable in them but
at a very simple level. This distribution is similar to the next
level, Multistructural. The highest level of understanding
Extended Abstract was reached in only six projects. Table VIII
shows the coding of the levels for the three most frequently
created project types. We discovered that most Story programs
could be classified as Prestructural or Unistructural. Animation
projects were also often programmed at a Prestructural or
Unistructural level. However, some were coded as
Multistructural up to Relational. Games were mostly at Level 3
or 4. One fifth of them are even classified as Extended Abstract.
Considering this, it seems that the sequence Story – Animation –
Game represents an evolution line that was passed by the
students step by step.

TABLE IV. PERCENTAGE OF PROJECTS IN DIFFERENT CLASSIFICATIONS

AND THEIR CORRESPONDING LEVEL OF COMPREHENSION

Level of

Understanding

Story Animation Game

L1: Prestructural 63 % 21 % -

L2: Unistructural 23 % 51 % 9 %

L3: Multistructual 14 % 19 % 29 %

L4: Relational - 9 % 38 %

L5: Extended Abstract - - 24 %

VII. DISCUSSION

Overall, our categorization turned out to be reasonably
applicable, except the classification of levels of understanding,
which was not entirely intuitive. Even if we reached an excellent
intercoder agreement right from the beginning, the coders
needed to come to an agreement for this particular classification.
We argue that the ranking with five steps is not optimal for these
kind of projects.

We found that there are three project types, which were used
most frequently: Animation, Story, and Game. When connecting
the results of block usage and project types, we found that the
usage of Look blocks decreased from Story to Game. Equally,
the percentage of Motion blocks increased from Story to Game.
Based on this and the findings from Section VI. F., Animations
seem to be a compromise between the two extremes.

We selected the projects presented in Section V based on the
most commonly created project types. Program 1 is a Story
project. Indications for this are the typical distribution of the
blocks used: the most frequently used type is Look (especially
say for _ secs), followed by Control (especially wait for _ secs).
Furthermore, this program executes as a fixed flow of a
conversation. The movement of elements is minimal. The
student has accurately timed, when each sprite speaks. In order
to activate the figures clown, muscle man and director the space
key must be pressed exactly at the right time. The ballerina is to
be activated with one click but is hidden from the very
beginning. Thus, it is not clear what the user is supposed to do at
this point. Therefore, usability can only be judged as “some parts
are not intuitive”. Considering the given requirements, this
student fulfilled the first three. The program is missing a
conditional statement.

The student of the second project created an Animation. This
is easy to recognize, because there is no possible user interaction.
All scripts are started with a click on the green flag and the
program contains no ask and wait prompts. Furthermore, the
program executes with a movement and a sound which does not
end automatically. The heavy usage of forever blocks shows
this.

In project 3, the student used quite a few blocks very well,
and the mixture of the different blocks was balanced. One of the
indications that this project belongs to the type Game is that a
game uses fewer sprites as well as fewer blocks compared to
other project types. Both characterizations are included in this
case. A game, like this one, is mostly controlled by pressing
keys and broadcasting messages. There are almost no Look
blocks and many Motion blocks. Although there are only two
sprites, the program includes nine event blocks. By using the
arrow keys to control the game, it is clear to the user what to do:
lead the small ball through a labyrinth, which is deliberately hard
to recognize (white lines mark the way).

An important observation is that the class courses produced
many more Story programs than the other courses. In contrast,
the students of the summer class sessions developed more
programs, which were categorized as Game.

There are many possible reasons for such differences. Firstly,
the schools and teachers play a significant role in the
development of their students. For example, the students of one
class course had a man as class teacher. In contrast, a woman
usually teaches the other class course. Furthermore, the students
of three courses lived in a rural area and the others in an urban
area.

Other reasons could be the educational background of the
parents and the migration background of the students. Of all 18
students in one class course, only one girl had no migration

background. In addition, we as course teachers influence the
students.

VIII. CONCLUSION

Overall, the results of our pilot courses demonstrated that at
least every second child in grade 4 is able to learn basic
programming with Scratch in three days. As the strongest
argument for this, one might take the portion of programs that
reached the second level of the SOLO taxonomy.

Yet, due to the low number of students, this result might still
be caused by some specific luck circumstances of our courses.
A lot of work will be needed to provide really convincing
arguments that all children in Primary school are able to learn to
program in several days. Of course we will repeat our
programing course with many more classes in the following
years.

To refine the evaluation, our next step will be to analyze the
screen captures we recorded during the courses of all screens in
order to find out in which order the students developed their
programs. Furthermore, we will try to find connections between
the video analysis and the analysis of the programming results.

We argue that the classification of the levels of
understanding is not completely usable for the projects. It is
important to revise this category system. In order to determine
what the students are able to learn during the three-day
introductory course, it is conceivable to analyze the learning
outcome of the courses as was done in [18].

ACKNOWLEDGMENT

We thank Johannes Krugel, Ramona Olwitz und Marc
Berges for supporting us during the course days.

REFERENCES

[1] J. Tsan, K. E. Boyer, and C. F. Lynch. “How early does the CS gender
gap emerge? A study of collaborative problem solving in 5th-grade
computer science,” in Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE '16), ACM, pp.
388-393, 2016

[2] M. Armoni and J. Gal-Ezer. “Early computing education,” ACM Inroads
vol. 5, issue 4, pp. 54-59, 2014

[3] T. Beaubouef and J. Mason. “Why the high attrition rate for computer
science students,” ACM SIGCSE Bulletin, vol. 37, issue 2, 103-106, 2005

[4] K. Brennan. “Learning computing through creating and connecting.
Computer,” vol. 46, issue 9, pp. 52-59, 2013

[5] T. Bell, I. H. Witten and M. Fellows. “CS unplugged - An enrichment and
extension programme for primary-aged students,” 2015

[6] A. Funke, M. Berges, and P. Hubwieser. „Different perceptions of
computer science,” in Proceedings of the 4th LaTiCE (LaTiCE '16), IEEE,
2016

[7] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. “The
scratch programming language and environment,” ACM Transactions on
Computing Education, vol. 10, issue 4, 15 pages, 2010

[8] K. Prottsman. “Computer science for the elementary classroom,” ACM
Inroads, vol. 5, issue 4, pp. 60-63, 2014

[9] H. Topi. “Gender imbalance in computing,” ACM Inroads, vol. 6, issue 4,
pp. 22-23, 2015

[10] L. Seiter. “Using SOLO to classify the programming responses of primary
grade students,” in Proceedings of the 46th ACM Technical Symposium
on Computer Science Education (SIGCSE '15), ACM, pp. 540-545, 2015

[11] A. Wilson, T. Hainey and T. Connolly, "Evaluation of computer games
developed by primary school children to gauge understanding of
programming concepts," International Journal of Games-based Learning,
vol. 3, no. 1, pp. 93-109, 2013.

[12] N. C. C. Brown, S. Sentance, T. Crick, and S. Humphreys. “Restart: the
resurgence of computer science in UK schools,” ACM Transactions on
Computing Education, vol. 14, issue 2, 22 pages, 2014

[13] K. Falkner, R. Vivian, and N. Falkner. “The Australian digital
technologies curriculum: challenge and opportunity,” in Proceedings of
the Sixteenth Australasian Computing Education Conference (ACE2014),
pp. 3-12, 2014

[14] John B. Biggs and Kevin F. Collis. “Evaluating the quality of learning:
the SOLO taxonomy (structure of the observed learning outcome),”
Academic Press, 1982

[15] G. Zaharija, S. Mladenović and I. Boljat. “Introducing basic programming
concepts to elementary school children," Procedia - Social and Behavioral
Sciences, vol. 106, pp. 1576-1584, 2013

[16] N. Rusk. “Scratch programming concepts,” retrieved 4th November 2016,
http://scratched.gse.harvard.edu/sites/default/files/scratchprogrammingc
oncepts-v14.pdf, 2009

[17] A. Wilson and D. C. Moffat. “Evaluating scratch to introduce younger
school children to programming,” in Proceedings of the 22nd Annual
Psychology of Programming Interest Group Workshop (PPIG ’10), 2010

[18] O. Meerbaum-Salant, M. Armoni, and M. (M.) Ben-Ari. “Learning
computer science concepts with scratch,” in Proceedings of the Sixth
international workshop on Computing education research (ICER '10).
ACM, pp. 69-76, 2010

[19] J. Denner, L. Werner and E. Ortiz. „Computer games created by middle
school girls: can they be used to measure understanding of computer
science concepts?,” Computers & Education, vol. 58, issue 1, pp. 240-
249, 2012

[20] C. Duncan and T. Bell. “A pilot computer science and programming
course for primary school students,” in the Workshop in Primary and
Secondary Computing Education (WiPSCE ’15), pp. 39-48, 2015.

[21] R. L. Brennan and D. J. Prediger. “Coefficient : some uses, misuses, and
alternatives,” Educational and Psychological Measurement, vol. 41, no. 3,
pp. 687-699, 1981

[22] A. von Eye. “An alternative to Cohen’s ,” European Psychologist, vol.
11, no.1, pp. 12-24, 2006

[23] J. R. Landis and G. G. Koch. “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977

