
WiPSCE ’17, November 8–10, 2017, Nijmegen, Netherlands Alexandra Funke and Katharina Geldreich

Measurement and Visualization of Programming Processes
of Primary School Students in Scratch

Alexandra Funke
Technical University of Munich

TUM School of Education
alexandra.funke@tum.de

Katharina Geldreich
Technical University of Munich

TUM School of Education
katharina.geldreich@tum.de

ABSTRACT
Currently in many countries efforts are undertaken to bring pro-
gramming education into the early levels of childhood education,
like primary school or even kindergarten. Therefore, it is becom-
ing more and more important to gain insight into which teaching
methods and content would be appropriate for young students of
primary levels. Besides the analysis of the results of such courses,
it is particularly interesting, in which way the programming pro-
cesses of the children take place and if there are distinguishable
types of young programming learners. To illustrate the processes
and to explore differences and special features of the individual
approaches we developed a new visualization technique for the
example of the programming language Scratch.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Children;

KEYWORDS
Computer science education; visualization; scratch; programming
ACM Reference Format:
Alexandra Funke and Katharina Geldreich. 2017. Measurement and Visual-
ization of Programming Processes of Primary School Students in Scratch.
In Proceedings of WiPSCE ’17. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3137065.3137086

1 INTRODUCTION
Computer Science (CS) has to overcome several challenges. Schools
and universities are confronted with different misconceptions and
prejudices towards CS [1] which manifest themselves from an early
age [5]. In order to prevent students from developing negative at-
titudes, one approach is to introduce Computer Science concepts
like programming as early as in primary school to provide oppor-
tunities for children to experience technology and CS. At the same
time, the discussion about the necessity of computer science and
programming in childhood education is growing steadily [7].

To find out which teaching methods and content would be appro-
priate for German primary schools, we designed an introductory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WiPSCE ’17, November 8–10, 2017, Nijmegen, Netherlands
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5428-8/17/11. . . $15.00
https://doi.org/10.1145/3137065.3137086

programming course for fourth graders. Within this, we used, as
many other researchers, Scratch as a programming environment.

Although a predominant goal of such courses is to change the
students’ attitudes towards CS, it is also important to gain insight
into how they create programs and how they apply the learned pro-
gramming concepts. To figure this out, we developed a visualization
technique to visualize the results of Scratch programming course
in order to better understand the process. Our research question
in this work was: How can programming processes be visualized so
that differences are observable?

2 BACKGROUND
As we have also experienced, the development of a perfect visualiza-
tion is often a big challenge [3]. There are different classifications of
visualization. In [3] the authors named three categories of visualiza-
tion: a) Scientific visualization to understand physical phenomena
or mathematical models; b) Software visualization, which helps
people to learn the use of e.g. software; c) Information visualization
which visualizes information with the use of spatial or graphical
representations. A more detailed classification can be found in
the periodic table of visualization [4]. For the six main categories
Data Visualization, Information Visualization, Concept Visualization,
Strategy Visualization, Metaphor Visualization and Compound Vi-
sualization, the authors described suitable methods. Further, they
divided the methods in Process Visualization and Structure Visu-
alization. This work focuses on Process Visualization methods of
the Information Visualization class. Examples for this in the pe-
riodic system are Cycle Diagram, Petri Net, System Dynamics /
Simulation, Timeline, Flow Chart and Data Flow Diagram.

Very popular diagrams in computer science are behavior and
structure diagrams of the Unified Modeling Language (UML)[6].
To visualize processes and workflows in software, there are, for
example, Activity Diagrams, Communication Diagrams, and Se-
quence Diagrams. For this work, the most interesting UML diagram
type is the Sequence Diagram. It shows object interactions during
a program execution arranged in a time sequence [6].

2.1 Visualization of programming processes in
Scratch

As shown above, there are currently many visualizations for soft-
ware and hierarchical data. The problem with most diagrams and
images is that they show parallel or hierarchical data. In contrast,
a programming process is sequential; there are no hierarchical
structures or alternatively branches. But still, it is important to see
different sprites in the same diagram. For this purpose, we found
no appropriate visualization.

https://doi.org/10.1145/3137065.3137086
https://doi.org/10.1145/3137065.3137086
https://doi.org/10.1145/3137065.3137086

Measurement and Visualization of Programming Processes of Primary School Students in ScratchWiPSCE ’17, November 8–10, 2017, Nijmegen, Netherlands

Figure 1: Example of a Development Diagram

Even the described UML diagrams which are common in soft-
ware engineering are not usable in this case. While it is possible
to model interactions and communication within a program or
between program and user, this is not the use case in this work.

We developed two different diagram types to show the results
of each student in a clear and comprehensible way.

2.2 Development diagram
We called the first created diagram type Development Diagram. It is
based on UML sequence diagrams which show how objects operate
with one another and in what order. Instead of this original diagram,
Development Diagrams describe the programming process for all
Sprites of one Scratch project, but no communication between them.
Fig. 1 shows an example Development Diagram. It starts with the
first Sprite which is added to the project. Because the time-line runs
from top to bottom, every new step in the programming process is
a new line in the diagram. After adding Sprite A, the user added
Sprite B. The editing of Sprite B is shown with the three points in
line 3. To describe if a block was added, edited, deleted or moved
to another position within the script, the image of the block is
displayed with the associated icon in front of it (e.g. a plus icon
for adding an element). A dashed horizontal line stands for a run
of the script. In this example, the project is started with a click on
the green flag. Sprite C is deleted without editing the script or the
sprite itself.

2.3 Sprite diagram
The second diagram type we called Sprite Diagram. It is in the
broadest sense a mix between an object diagram and an activity
diagram. Sprite Diagrams describe the programming process for
one Sprite of the Scratch project. Fig. 2 shows an example Sprite
Diagram. It starts with the name of the Sprite.

Because the time-line runs from top to bottom, every new step in
the programming process is a new line in the diagram. The columns

Figure 2: Example of a Sprite Diagram

of the diagram are blocks which were used in the project. Because it
is interesting, which exact block was added or deleted, the changes
of the same block are written among each other. Some block types,
like forever or if_then can contain other blocks. To visualize which
blocks were added within forever or if_then, arrows are used.

3 CONCLUSION AND FUTUREWORK
With the developed diagram types, it is easily possible to find impor-
tant points in the programming processes of the students. To show
this, we will code and analyze data from our programming courses
in a future work. Based on this and the created visualizations, we
will develop a system for the automated generation of the visual-
izations from a list of codes. Afterwards, the visualizations will be
automatically generated and analyzed. One goal of our work is to
find out if we can distinguish different programming types between
the students, the classes or specific groups of children. We think
that the visualizations together with screen captures and video
recordings will play an important role in this step. In a previous
work of ours [2] we found that the children created three project
types in particular: Story, Game, and Animation. We wonder if the
project type relates to the programming process and the other way
around.

REFERENCES
[1] A. Funke, M. Berges, and P. Hubwieser. Different Perceptions of Computer Science.

In 2016 International Conference on Learning and Teaching in Computing and
Engineering (LaTICE), pages 14–18. IEEE, 2016.

[2] A. Funke, K. Geldreich, and P. Hubwieser. Analysis of Scratch Projects of an
Introductory Programming Course for Primary School Students. In Proceedings of
the 2017 IEEE Global Engineering Education Conference (EDUCON), pages 1233 –
1240. IEEE, 2017.

[3] M. Khan and S. S. Khan. Article: Data and information visualization methods, and
interactive mechanisms: A survey. International Journal of Computer Applications,
34(1):1–14, November 2011.

[4] R. Lengler and M. J. Eppler. Towards a periodic table of visualization methods of
management. In Proceedings of the IASTED International Conference on Graphics
and Visualization in Engineering, pages 83–88, Anaheim, USA, 2007. ACTA Press.

[5] K. Prottsman. Computer science for the elementary classroom. ACM Inroads,
5(4):60–63, 2014.

[6] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual. Pearson Higher Education, 2004.

[7] H. Topi. Gender imbalance in computing. ACM Inroads, 6(4):22–23, 2015.

©ACM, 2017. This is the author’s version of the work.It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in WiPSCE ’17, Nijmegen, Netherlands, (November 8–10, 2017) doi.org/10.1145/3137065.3137086

doi.org/10.1145/3137065.3137086

	Abstract
	1 Introduction
	2 Background
	2.1 Visualization of programming processes in Scratch
	2.2 Development diagram
	2.3 Sprite diagram

	3 Conclusion and Future Work
	References

