WiPSCE *17, November 8-10, 2017, Nijmegen, Netherlands

Alexandra Funke and Katharina Geldreich

Gender Differences in Scratch Programs of
Primary School Children

Alexandra Funke
Technical University of Munich
TUM School of Education
Arcisstr. 21, 80333 Munich, Germany
alexandra.funke@tum.de

ABSTRACT

It is commonly believed that the attitudes towards programming
are strongly dependent on gender among adolescents or adults. Re-
garding younger children, these differences in the attitudes might
be less relevant. To investigate this, we have analyzed the learn-
ing outcomes of an introductory programming course for primary
school children. The three-day course was designed specifically for
4th-grade students (ages 9 - 10) and taught four times up to now.
Fifty-eight children (26 girls and 32 boys) have participated from
May to August 2016. During these courses, the children have devel-
oped 127 Scratch projects. We found that boys and girls had used
different block types to develop their programs. It also showed that
girls and boys created very different types of programs. This pa-
per presents the course design; the methodology of the qualitative
analysis and the results in detail.

CCS CONCEPTS

«Social and professional topics — Computer science educa-
tion; Gender; Children;

KEYWORDS

Computer science education; primary school; primary education;
scratch; programming; gender

ACM Reference format:

Alexandra Funke and Katharina Geldreich. 2017. Gender Differences in
Scratch Programs of Primary School Children. In Proceedings of WiPSCE
’17, Nijmegen, Netherlands, November 8-10, 2017, 9 pages.

DOI: 10.1145/3137065.3137067

1 INTRODUCTION

Computer Science has to overcome several challenges. Universities
and schools are confronted with different misconceptions and prej-
udices towards CS [11] which manifest themselves from an early
age [20]. In order to prevent students from developing negative
attitudes, one approach is to introduce Computer Science concepts
like programming already in primary school to provide opportu-
nities for making experiences with technology and CS. Children

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WIPSCE °17, Nijmegen, Netherlands

© 2017 ACM. 978-1-4503-5428-8/17/11...$15.00

DOI: 10.1145/3137065.3137067

Katharina Geldreich
Technical University of Munich
TUM School of Education
Arcisstr. 21, 80333 Munich, Germany
katharina.geldreich@tum.de

should learn that they can use computers not only as users but also
as creators [2]. This role change combined with a fun experience
of programming could increase their self-confidence towards CS in
particular and technology in general [22]. At the same time, the dis-
cussion about the necessity of computer science and programming
in childhood education is growing steadily [22]. While several coun-
tries have already introduced CS in their primary school curricula
(e.g. the UK [7] and Australia [10]), Germany has not yet developed
mandatory guidelines for how to deal with the new topics. To find
out which teaching methods and content would be appropriate for
German primary schools, we designed an introductory program-
ming course for fourth graders. Although a predominant goal of
the course was to change the students’ attitudes towards CS, we
also wanted to gain insight into how profoundly they can learn
several programming concepts. Further, we want to investigate the
relationship between the students’ gender and the quality of the
program they created. According to this, our research question was

o Which differences can be detected between the programming
results of boy and girls?

This work is structured as follows: First, we discuss some theo-
retical background about gender differences in CS and related work
regarding Computer Science courses for primary school students,
especially programming courses. In addition, we provide a short
overview of the design of our programming course. This is followed
by a description of the methodology and analysis. In order to il-
lustrate the qualitative analysis of the programming results, we
present three project examples from our courses. Afterward, the
results are presented with a discussion of the findings. The paper
closes with a summary of the findings and an outlook for further
work.

2 RELATED WORK
2.1 CS Courses for Primary Schools

In recent years, a variety of courses has been developed to expose
children to computer science concepts. Some of these courses set
their focus on programming. In [23] the authors implemented an
in-school computer science course for 5th-grade students. They
co-designed this with a primary school teacher who had prior
knowledge in technology but no plain CS background. The authors
offered the course as a 30-hour course during the regular school
year. To analyze the effectiveness of this collaboratively developed
curriculum, the researchers collected data with interviews before
and after the course, videos of the working students, screen record-
ings and student-created material like short essays and storyboards.
During the class, the students completed two programming projects

Gender Differences in Scratch Programs of Primary School Children

with Scratch and worked almost all in pairs (18 pairs in total). They
found that female-female pairs worked very well together and were
creative. However, their products missed many requirements. One
male-male pair had a keen interest and enthusiasm for program-
ming. They tried out many things on their own and had a similar
line of thinking. Nevertheless, the product of the boys got low
scores for usability and consistency. In summary, the authors listed
critical observations for future courses. One key finding from this
research is the usefulness of supportive, collaborative work. Pro-
gramming is also an important part of the CS courses in [9], where
Duncan and Bell described an example computer science course
for primary schools students. The authors implemented a CS class,
which took place an hour a week during a school year. More than
600 students aged between 5 and 12 were taught during the study.
The primary goals of the course were that the students engage with
the presented content and enjoy the classes. Furthermore, rather
than learning to use a specific programming language, the students
should become familiar with the basic principles of programming.
During these courses, the students worked with the programming
language Scratch and had to solve two main programming quizzes
at the end. After analyzing the results, the researchers found no
statistically significant difference between the average achievement
of the participating girls and boys. However, girls were not as good
as boys at predicting their ability. Despite doing as well as the boys,
they did not seem to be aware of this. Girls needed more encour-
agement to try out new activities while the boys often followed a
more experimental approach and tried out more on their own. In
summary, most of the kids enjoyed using Scratch and wanted to
continue learning about CS and programming.

2.2 Gender Differences in CS

A lot of research has been conducted that showed the existence of
gender differences in Computer Science (CS), for example in Europe
or the United States [4]. Still, more boys choose computer science
at school or as a professional field than girls. Already in school,
frequently boys are performing better in CS compared to girls [17].
Several studies explained this differences by certain stereotypes
that are supposed to have a negative impact on the performance of
female students, see for example [19]. For example, the role model
of the typical male computer scientist is still alive [26]. On the

Figure 1: Programming with haptic blocks

WiPSCE ’17, November 8-10, 2017, Nijmegen, Netherlands

other hand, almost no female role models for girls exist, because the
majority of computer scientists and computer science teachers still
are male. At home girls and boys often experience mothers that are
technologically still inept, which represents a substantial obstacle
to female role models in computer science [18]. When choosing
their major subject, students often have a diffuse perception of CS.
It seems that boys decide based on their interests in computers or
programming, while girls choose due to the prospects for future
professional life [1]. Boys seem to have more prior knowledge in
CS. Girls, in contrast, are less self-confident in this area. They tend
to attribute their successes in computer science to luck and their
failures to the lack of ability [26]. However, both female and male
students can reach the same level of ability in computer science [8].
It turned out that the performance of CS students does not differ
between men and women if learning styles are taken into account

(8].

3 DESIGN OF THE COURSE

We developed a three-day course for students of the fourth grade
of primary school, see also [14]. As context, we chose "Circus” for
all tasks and materials, out of three reasons. First, we regarded
this as an attractive field of their personal experience. Second, a
circus offers a variety of interesting tasks to simulate the actions of
animals or human beings. Third, we hoped to attract both girls and
boys equally by this metaphor. On each day, we spent four hours
with the kids. Day by day, the students are exposed to a more and
more detailed picture of programming. At the end, we expected
that the children had learned the basic principles of programming,
in particular, to work with the programming environment as well
as to apply and combine algorithmic control structures.

Day 1 Most of the students did not have any previous knowledge
of programming or computer science. Therefore, the goal of the
first day is to give them a basic idea of how a computer program
works. They were to realize that programs execute a particular task
by following precise and clear instructions. Because we did not
want to overstrain the students, we decided to introduce the basic
algorithmic concepts "unplugged” [3], before any programming.

Figure 2: Simulating the execution of a program

WiPSCE *17, November 8-10, 2017, Nijmegen, Netherlands

Hence we use social activities and group problem-solving at day
one, without actually working on computers. In order to learn how
to split tasks into smaller parts, we provided a variety of short exer-
cises in which different activities had to be transformed according
to unambiguous instructions. Afterward, the groups had to work
together to solve a more complex task. To take up the circus theme,
we let the students program each other, solving tasks like search-
ing for missing items or animals in a circus tent. To represent the
solutions, we use haptic (printed and shrink-wrapped) Scratch-like
programming blocks to prepare real” computer programming on
day two (Figure 1 and 2).

Day 2 The goal of the second day is to enable the students to
create simple Scratch programs that produce Multimedia output.
To provide a child-friendly programming environment and to spare
the students any unnecessary syntactical overhead, we decided to
use the block-based language Scratch [16]. We created a learning
circle with increasingly difficult stations, which introduces the core
elements of Scratch one by one, leading from simple sequences to
control structures like loops and conditional statements. In each
part of the circle, the students have to solve tasks that are presented
on handed-out instruction sheets. To support the students’ expected
variety in knowledge and learning pace, we prepared additional
tasks as well as helpful tips.

Day 3 On the third day, we wanted to find out what the students
had learned and if they could solve more open tasks. In addition,
we wanted to stimulate the children to work creatively and in a self-
directed fashion. To compare the outcomes, we set the following
“mandatory” requirements for the students’ projects. The programs
should a) work on more than one sprite b) move the sprites during
execution c) comprise at least one iteration and d) include at least
one conditional statement. After meeting these requirements, the
students should continue their programming work without any
further guidelines. They were free to experiment with Scratch, to

Table 1: Subcategories for A. Requirements

category/code

description

Several Sprites Counting all sprites to figure out if more

than one sprite is used.
Sprite Motion Sprites should move during program ex-
ecution. For this, all blocks of the type
Motion were counted to match them with
this category.

An iteration is included, when the students
used forever or repeat blocks.

Iteration

Conditional State- | If a program contains at least one if _ then
ment or if _ then else block to check for condi-
tions, we code this as a conditional state-
ment.

Alexandra Funke and Katharina Geldreich

invent their circus stories and implement these. At the end of day
three, all programs were presented in front of the course, and the
students had the opportunity to comment their project.

Table 2: Subcategories for B. Programming Concepts

category/code

description

Sequence A correct sequence is present when the
program runs in a systematic order. For
example, some students did not pay atten-
tion to how the program would be exe-
cuted. When they created a conversation,
sometimes all scripts ran at the same time

by mistake.

Variables can be created within Scratch
and then be used within programs. To code
this category, the variable blocks of Data
are counted and matched.

Variables

Lists Similar to Variables, the list blocks of Data
are counted and matched with this cate-

gory.
Event Handling Responding to events triggered by either
the user or another script. All blocks of the
type Event were counted to match them
with this category.

Threads If two or more scripts were going to ex-
ecute at the same time, we coded this as
existent threads.

Coordination and | Checking the program for all wait _ secs,

Synchronization wait until, when I receive, broadcast and
broadcast _ and wait blocks, for coordinat-
ing the actions of multiple sprites.

Keyboard Input Includes the program an ask _ and wait

block, and it provides a keyboard input for
users.

Random Numbers | A random number exists when a pick ran-
dom to block could be found in the project.

And, or and not were coded as boolean
logic.

Boolean Logic

Dynamic Interac- | The usage of mouse x, mouse y or loudness
tion is used for dynamic interaction.

Gender Differences in Scratch Programs of Primary School Children

Table 3: Subcategories for C. Code Organization

WiPSCE ’17, November 8-10, 2017, Nijmegen, Netherlands

Table 4: Subcategories for D. Operability

category/code ‘ description category/code ‘ description
Extraneous A block is extraneous if it has no connec- Functionality Whether or not the project performs cor-
Blocks tion to a script with a starting event. rectly when it is started is coded as func-

Sprite Names This category codes whether the original

sprite name is overridden or not.
Variable Names This category codes whether the name of
a variable is meaningful (e.g. fitimerfi) or
not.

4 STUDY

4.1 Methodology

The goal of the study is to investigate the relationship between the
students’ gender and the characteristics of the program they created.
For this, our methodological approach consists of two steps: data
collection during the courses and the data analysis, consisting of a
qualitative analysis of the records, and especially in this case the
children’s programming results.

All sessions were entirely videotaped to analyze the interac-
tions of the students. At the beginning and end of each course
day, we hold group interviews with the classes. To get an idea
of the students’ prior knowledge, as well as their mental image
of programming, we used a variety of interviewing and reflection
methods. Further, we captured the screens of the student computers
during the programming exercises on days two and three. This is
important to get an image of the students’ working methods. To
collect the Scratch programs of the students, we saved the projects
after the course days. One goal of the study is to examine the qual-
ity of the programs the children created. Further, we want to find
which programming concepts they use and in which way they do
so.

For rating the projects’ quality, we developed a category system.
We distinguish between four main categories: A. Requirements
(Table 1), B. Programming Concepts (Table 2), C. Code Organization
(Table 3) and D. Operability (Table 4). Finally, we analyzed the
projects for the Level of Understanding (Table 5) which based on
the SOLO taxonomy [5]. The code systems based on the analysis of
existing category systems. The development of them is described
in detail in [13].

4.2 Application

All courses were taught by a female trained primary school teacher
who is also a researcher in CS education. Additionally, a male
computer scientist assisted during the courses. In May 2016, a pilot
study was carried out at a student research center, which is led
by our University. After following improvements of the tasks, we
conducted the course with classes of 4th grade in June and July.
They took place in rooms of our faculty, where we were able to
provide a constant setting and stable technical equipment. A further
course followed in August at the student research center.

tionality.

Sprite Customiza- | A sprite is customized, if a predefined
tion sprite is adjusted (e.g. removing an arm)
or if the student created their own sprite
(e.g. drawing it).

Stage Customiza- | A stage is customized, if a predefined stage

tion is adjusted (e.g. add a drawing) or if the
student created their own sprite (e.g. draw-
ing it).

Interactivity A highly interactive program provides the

user with opportunities to interact with it
(e.g. key control). In contrast, a program
with no interactivity is, for example, a se-
quence of actions.

Usability The project is intuitive, if the user under-
stands how the program runs with little
or no information. Sometimes programs
use unorthodox keys for controlling the
program, like fiGfi. This is only partly in-
tuitive for users.

Project Type We coded the project types Animation,
Game, Interactive Art, Music and Dance,
Story and Video Sensing according to the
project designation on the Scratch web
page . For example, a Story is a sequence of
actions without any user input or control
possibilities.

Further, we want to find which programming concepts they use
and in which way. In our case, the sample size is 127 programs.
74 programs of 26 girls and 53 programs of 28 boys. Two boys
deleted their programs before we could save them and two other
boys worked together in a team. For this reason, we were only
able to use the projects of 28 male students. For the rating of the
projects’ quality, we first developed a category system. For this
purpose, we analyzed already existing category systems [23] [21]
[25] and adjusted them based on our course material and given
requirements for the students.

With using these category systems, two researchers rated 27
projects (21 %) of the primary school students of our courses to as-
sess intercoder agreement and reliability. Both raters did not know
which student created which project and even not the gender of the
student. To get an idea of the accord, the coefficient of Brennan [6]
and the raw agreement were calculated, which resulted in an almost

WiPSCE *17, November 8-10, 2017, Nijmegen, Netherlands

Table 5: Categories for Level of Understanding

category/code

description

Prestructural (L1) The script contains only a few blocks.
The student does not understand
how to extend the script to a mean-
ingful program.

Unistructural (L2) The script contains sequences of ac-
tions in a simple way. Control struc-
tures are not contained or they are
unrelated.

Multistructural (L3) The script fulfills all given require-
ments and includes a variety of differ-
ent block types. The code may have
been reorganized to make a more in-
tegrated solution.

Relational (L4) The script provides a well-structured
program that removes all redun-
dancy and has a clear, logical struc-
ture.

Extended Abstract (L5) | The script uses concepts and blocks
beyond those required in the exercise
to provide an improved solution.

perfect agreement according to Landis [15]. The common factors
of Cohen and Krippendorff are not applicable, as they require a
normal distribution of the codes [24]. After the coding process, we
clustered the projects by the courses and gender. For each group,
we studied the results and differences between them, which are
presented in Section 5. Furthermore, we tried to find connections
between individual categories.

4.3 Example Projects

4.3.1 A Girl’s Project. Figure 3 shows a story about a circus
manager, wizard, bear and muscle man with twelve sprites. Because
the theme of the courses was Programming Circus, this is a typical
storyline in the projects. The student used eleven different blocks,
a total of 50 blocks. As shown in the code of Fig. 4, the most
commonly used block type was Look (28 blocks). Thirteen of these
blocks were say _ for _ secs. In order to start the scripts she used
when green flag clicked (3), and when I received (3). Each sprite was
assigned exactly one Event block. To structure the conversion of
the story, the student used 10 wait _ secs and three messages.

4.3.2 A Boy’s Project. An example program of a boy is shown in
Figures 5 and 6. A total of 36 blocks were used (14 different blocks).
Out of them, 12 belong to Motion (six times move _ steps). Even
though he only used two sprites to develop his small game, the pro-
gram reacted to nine Events (seven times when _ key pressed). With
two if _ then blocks, the student included conditional statements.
In addition, three iterations are included. The user can activate a

Alexandra Funke and Katharina Geldreich

» %

new game round by pressing the key "q”. When the sprite touches
the turquoise lines, the user loses the game. Both events broadcast
a message that causes that the sprite to move to the start.

5 RESULTS

Overall the students used 3,200 blocks in their Scratch projects.
During the second course day, we introduced 28 different blocks
to the students. Three-fourths of the used blocks were part of the
introduced blocks. Boys used 70 different blocks, whereas girls used
40 different blocks.

When looking at the types of blocks, which were used, we ob-
serve that male students use twice as often Motion blocks. Female
students instead use twice as often blocks out of the Look section.
The usage of Control and Event blocks are nearly the same for both
groups. With 10 % of usage, the most used block of boys is move
_ steps. However, as one can see in (Table 7, the second (when _
key pressed) and third (when green flag clicked) most used blocks of
them have nearly the same percentage. In the programs of girls are
three blocks, which stand out: wait _ secs, when green flag clicked
and say _ for _ secs (Table 6). Boys chose more often the when _ key
pressed-block as a start of their script.

Overall, girls use a mean of 23 blocks (median 16) and six sprites
(median 5). Boys instead used 32 blocks on average (median 18)
and five sprites (median 3). Important programming concepts are
conditional statements and iterations. During the third course day,
we gave the instruction that the programs should contain at least
one of each concept. 61 % of the girls and 64 % of the boys reached
the requirement to use at least one conditional statement. However,
iterations were included in the projects of 84 % of girls and 78 % of
boys.

The developed programs of the students differ in their complex-
ity. Almost all students arranged the blocks in their projects in
a systematic order (90 %) and used at least one event (93 %). 102
projects (80 %) include more than two Event blocks. Parallel execu-
tion of two independent scripts is supported by 16 % of all projects.
Moreover, even 63 % support the parallel launching of more than
two scripts. Some subcategories of programming concepts were
not included in any project.

Neither girls nor boys have overridden the names of the sprites.
Further, only four projects included variables. Only one of them
was made by a girl. With 5 % of all produced programs by girls, only
a small number include extraneous blocks. For boys, this number
is with 21 % much higher.

80 % of the projects were categorized as being completely func-
tional. Only 11 programs (9 of girls) have no function at all. In the
most projects, there exist no sprite customization (108 projects, 85
%) and stage customization (112 projects, 88 %). These results are bal-
anced between boys and girls. Nearly two-thirds of the projects do
not offer any interactive elements to the user, such as user input or
keyboard control to interact with the program. Most of the projects
which contain keyboard control were made by boys. As partly or
entirely intuitive were categorized over 80 % of the projects, only 23
projects are not intuitive at all. The most often project type which
appears is Story with nearly 45 % of all programs. It is followed by
Animation (32 %) and Game (16 %). An important observation is
that the girls produced much more Story-programs (79 % of these

Gender Differences in Scratch Programs of Primary School Children

ladies and
gentlemen
welcome

<oy EXTINENE for € secs -

answer = [T

PO hat makes me happy RETR 2 B0

broadcast do you liked it

broadcast abra kadabra
say for € secs

say [EFTTRETTRTAI for € secs
say [TIYTT for € secs

wait @) secs |

Figure 4: Code for the girls’ project

when 1 receive doyou liked it ’

say EXTTTTTIEIERE] for € secs

when 1 receive doyou liked it

sy IETEETITIIINN for € secs

were made by girls). Against this, male students developed more
programs which were categorized as Game (90 % of these were
made by boys). Animation programs were made 50 % of boys and
50 % of girls.

44 % of the students reached only the first level of the Levels of
Understanding (see [13]) Prestructural. It means the students do
not understand how to animate the sprites. In some projects, there
are no blocks used at all. Girls made nearly 80 % of the programs
at this level. Level 2 Unistructural was reached by one-fourth of
the Scratch projects. First animations and logic are observable in
them but on a very simple step. These programs were made 50 %
of boys and 50 % of girls. This distribution is similar to the next
level Multistructural. The highest level of understanding Extended
Abstract was reached only by six projects, which were made by
boys.

WiPSCE ’17, November 8-10, 2017, Nijmegen, Netherlands

Figure 6: Code for the boys’ project

6 DISCUSSION

We selected the projects presented in Section 4.3 based on the
most frequently created project types for each group. Program
1 is a Story project of a girl. Indications for this are the typical
distribution of the blocks used: the most frequently used type
is Look (especially say for _ secs), followed by Control (especially
wait for _ secs). This usage of blocks is not only typical for girls
of our courses (see Table (Table 7), but even for the distribution
within a Story. Furthermore, this program executes as a fixed flow

WiPSCE ’17, November 8-10, 2017, Nijmegen, Netherlands

Table 6: Boys’ Top Ten Blocks

Alexandra Funke and Katharina Geldreich

Table 7: Girls’ Top Ten Blocks

Block

Image Type Portion

Block ‘ Image Type Portion

move m steps

move _ steps Motion 10.8 %

when _ key pressed Events 9.1%

when clicked

when green flag clicked Events 9.0%

l;_

wait _ secs - Control 7.7 %
- —’_]
forever . 1 Control 72%
o™
r—-'—J
if _ then ~_———"J Control 53%

Motion 4.2 %
Look 41%

point in direction

say _for _secs

I

repeat - Control 4.1%

glide @) secs to x: O y: O

Motion 3.2 %

glide _ secs to x: y:

of a conversation. The movement of elements is minimal. The
student has accurately timed, when each sprite speaks. There is no
possibility for the user to interact with the program with e.g. key
control. The figures bear, girl and boy are activated with messages
within the project. The program is missing a conditional statement,
which was a given instruction.

In project 2, the boy used quite a few blocks very well, and the
mixture of the different blocks was balanced. One of the indications
that this project belongs to the type Game is that a game uses
fewer sprites as well as fewer blocks compared to other project
types. Both characterizations are included in this case. A game, like
this one, is mostly controlled by pressing keys and broadcasting
messages. There are almost no Look blocks and many Motion blocks.
Although there are only two sprites, the program includes nine
event blocks. By using the arrow keys to control the game, it is
clear to the user what to do.

As mentioned in section 5, boys used 70 different blocks, whereas
girls used only 40 different blocks. Boys are often described as more
willing to experiment [12]. That could be another indication for
this and should be the focus of following investigations. Further,
we found that the most used block types, as well as concrete blocks,
differ between the groups. Girls use more often Look blocks, boys
more often Motion blocks. Also, the three most used blocks of girls
(wait _ secs, when green flag clicked, say _ for _ secs) might be an

wait _ secs Control 13.5%

when clicked

]

when green flag clicked Events 121 %

say _ for _ secs e BREEY Look 11.5 %

MoV m steps

move _ steps Motion 6.3 %

i

repeat S Control 3.8 %

hide Look 3.7 %

play sound pop

show m Look 3.6%

play sound _ Sound 27%

Look 2.6%

Sound 24%

switch costume to

rest for _ beats

indication for creating a program of the type Story, because one
characterization of Stories is a very high number of Look blocks
[13]. The scripts in this project types start almost every time with
a when green flag clicked-block. On the other hand, the high usage
of when _ key pressed and the Motion blocks of boys might indicate
that they created a Game project.

There are many possible reasons for such differences. Firstly, the
schools and teachers play a significant role in the development of
their students. For example, the students of one class course had a
man as the class teacher. In contrast, a woman usually teaches the
other class course. Furthermore, the students of three courses lived
in a rural area and the others in an urban area. Other reasons could
be the educational background of the parents and the migration
background of the students. Of all 18 students in one class course,
only one girl had no migration background. In addition, we as
course teachers influence the students.

7 CONCLUSION

Overall, the results of our pilot courses demonstrated that at least
every second child, boys as well as girls, in grade 4 is able to learn
basic programming with Scratch in three days. However, there are
some differences between girls and boys in the working methods
and the used blocks/concepts.

Due to the low number of students, this result might still be
caused by some specific luck circumstances of our courses. A lot
of work will be needed to provide convincing arguments that all

Gender Differences in Scratch Programs of Primary School Children

children in primary school are able to learn to program in several
days. Of course, we will repeat our programming course with many
more classes in the following years. To refine the evaluation, our
next step will be to analyze the screen captures we recorded during
the courses of all screens in order to find out in which order the
students developed their programs. Furthermore, we will try to
find connections between the video analysis and the analysis of the
programming results.

ACKNOWLEDGMENTS

We thank Johannes Krugel and Ramona Olwitz for supporting us
during the course days.

REFERENCES

[1] M. K. Ahuja. Women in the information technology profession: a literature
review, synthesis and research agenda. European Journal of Information Systems,
11(1):20-34, 2002.

[2] M. Armoni and]. Gal-Ezer. Early computing education. ACM Inroads, 5(4):54-59,
2014.

[3] T.Bell, I H. Witten, and M. Fellows. CS Unplugged: An enrichment and extension
programme for primary-aged students. 3 edition, 2015.

[4] S.Beyer, K. Rynes, J. Perrault, K. Hay, and S. Haller. Gender Differences in Com-
puter Science Students. In Proceedings of the 34th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE 03, pages 49-53, New York, NY, USA,
2003. ACM.

[5] J.B.Biggs and K. F. Collis. Evaluating the quality of learning: the SOLO taxonomy
(structure of the observed learning outcome). Academic Press, 1982.

[6] R.L.Brennan and D. J. Prediger. Coefficient Kappa: Some Uses, Misuses, and
Alternatives. Educational and Psychological Measurement, 41(3):687-699, 1981.

[7] N.C.C.Brown, S. Sentance, T. Crick, and S. Humphreys. Restart: the resurgence
of computer science in UK schools. ACM Transactions on Computing Education,
14(2):1-22, 2014.

[8] P.Byrne and G. Lyons. The effect of student attributes on success in programming.
ACM SIGCSE Bulletin, 33(3):49-52, 2001.

[9] C.Duncan and T. Bell. A Pilot Computer Science and Programming Course for
Primary School Students. In the Workshop in Primary and Secondary Computing
Education, pages 39-48, 2016.

[10] K. Falkner, R. Vivian, and N. Falkner. The Australian Digital Technologies Cur-
riculum: Challenge and Opportunity. In Proceedings of the Sixteenth Australasian

(12]

[13]

(19]
[20]

[21]

WiPSCE ’17, November 8-10, 2017, Nijmegen, Netherlands

Computing Education Conference - Volume 148, ACE ’14, pages 3-12, Darlinghurst,
Australia, Australia, 2014. Australian Computer Society, Inc.

A. Funke, M. Berges, and P. Hubwieser. Different Perceptions of Computer
Science. In 2016 International Conference on Learning and Teaching in Computing
and Engineering (LaTICE), pages 14-18. IEEE, 2016.

A. Funke, M. Berges, A. Miihling, and P. Hubwieser. Gender Differences in
Programming: Research Results and Teachers’ Perception. In the 15th Koli
Calling Conference on Computing Education Research, pages 161-162. IEEE, 2015.
A. Funke, K. Geldreich, and P. Hubwieser. Analysis of Scratch Projects of an
Introductory Programming Course for Primary School Students. In Proceedings
of the 2017 IEEE Global Engineering Education Conference (EDUCON), pages xx —
xx. IEEE, 2017.

K. Geldreich, A. Funke, and P. Hubwieser. A Programming Circus for Primary
Schools. In Proceedings of the 9th International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives, pages 46—47. 2016.

J. R Landis and G. G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):159-174, 1977.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond. The Scratch
Programming Language and Environment. ACM Transactions on Computing
Education, 10(4):1-15, 2010.

J. Margolis and A. Fisher. Unlocking the Clubhouse: Women in Computing. 2002.
P. Moorman and E. Johnson. Still A Stranger Here: Attitudes Among Secondary
School Students Towards Computer Science. ACM SIGCSE Bulletin, 35(3):193,
2003.

B. Nelson. The data on diversity. Communications of the ACM, 57(11):86-95,
2014.

K. Prottsman. Computer science for the elementary classroom. ACM Inroads,
5(4):60-63, 2014.

L. Seiter. Using solo to classify the programming responses of primary grade
students. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education, SIGCSE ’15, pages 540-545, New York, NY, USA, 2015. ACM.
H. Topi. Gender imbalance in computing. ACM Inroads, 6(4):22-23, 2015.

J. Tsan, K. E. Boyer, and C. F. Lynch. How Early Does the CS Gender Gap Emerge?
In the 47th ACM Technical Symposium, pages 388393, 2016.

A.von Eye. An Alternative to Cohen’s . European Psychologist, 11(1):12-24, 2006.
A. Wilson, T. Hainey, and T. Connolly. Evaluation of computer games developed
by primary school children to gauge understanding of programming concepts.
International Journal of Games-based Learning, (3):93-109, 2013.

B. C. Wilson. A Study of Factors Promoting Success in Computer Science
Including Gender Differences. Computer Science Education, 12(1-2):141-164,
2010.

©ACM, 2017. This is the author’s version of the work.It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 12th Workshop on Primary and Secondary Computing Education (WiPSCE ’17),
Erik Barendsen and Peter Hubwieser (Eds.).http://dx.doi.org/10.1145/3137065.3137067

http://dx.doi.org/10.1145/3137065.3137067

	Abstract
	1 Introduction
	2 Related Work
	2.1 CS Courses for Primary Schools
	2.2 Gender Differences in CS

	3 Design of the course
	4 Study
	4.1 Methodology
	4.2 Application
	4.3 Example Projects

	5 Results
	6 Discussion
	7 Conclusion
	Acknowledgments
	References

