
Searching for Barriers to Learning Iteration and Runtime

in Computer Science
Philipp Shah

Technische Universität München
TUM School of Education

80333 München, Germany
+49 89 289 29114

Philipp.Shah@tum.de

Dino Capovilla
Technische Universität München

TUM School of Education
80333 München, Germany

+49 89 289 29114

Dino.Capovilla@tum.de

Peter Hubwieser
Technische Universität München

TUM School of Education
80333 München, Germany

+49 89 289 29110

Peter.Hubwieser@tum.de

ABSTRACT

The knowledge about misconceptions of programming beginners

can help the instructors to improve their lessons and exercises and

to eliminate barriers to learning. However, there is not much

research about learning barriers, like misconceptions, in computer

science education. This paper explains the goals and first results

of our survey in this area. We interviewed 60 students in a pretest

and 110 students in a test [8] to observe whether misconceptions

about iterations and runtime are following underlying intuitive

rules. Our results are verifying an underlying rule and unveiling

two new misconceptions, which – to the best of the authors'

knowledge - have not been mentioned in literature yet. The results

could help teachers to prevent learners’ misconceptions.

Categories and Subject Descriptors

• Social and professional topics → Professional topics →

Computing education;

Keywords

Misconceptions; Intuitive Rule; Alternative Conceptions;

Iterations; Runtime.

1. INTRODUCTION
Learners of computer science sometimes make a ‘mistakes’. A few

of these mistakes are possibly just problems with syntax or are

due to inattention, but some of them have their source in so-called

misconceptions or alternative conceptions (see section 2 for a

definition). We are interested in a systematical view on the source

of misconceptions in computer science. Categorizing

misconceptions based on their underlying structure could help to

explain mistakes and prevent learners from making mistakes,

which are based on these alternative conceptions. Therefore, we

constructed a pretest and a written interview [8] with six

questions. With the first two questions we tried to validate the

misconception ‘two programs containing the same statements

(even if in different order) are equally efficient’ discovered by

Gal-Ezer & Zur [3] by testing students with very simple Java

programs – instead of rather complex C programs. Furthermore,

we tried to generalize this misconception to the misconception

‘two programs containing the same number of lines and similar

(but not same) statements are equally efficient’. This would

suggest a more generalized and stronger effect of the intuitive rule

‘same A, same B’ (see section 2) for students of computer science.

This intuitive rule would emerge as a barrier to learning and a

base for alternative conceptions. This paper presents the

qualitative evaluation of the results of the first question, which is

validating the misconception mentioned above. Moreover, we are

unveiling two new misconceptions, which have not been

mentioned in literature yet. The results could help instructors to

prevent learners’ misconceptions.

2. THEORETICAL BACKGROUND
Alternative conceptions or so-called misconceptions are

conceptions which are not in line with accepted scientific notions

[9], but some of them seem to follow intuitive rules. Stavy and

Tirosh [9] investigated such intuitive rules and their

corresponding misconceptions in science and mathematics.

Publications about misconceptions in computer science education

can be considered as collections of these alternative conceptions;

Ragonis and Ben-Ari [7] who listed about 58 misconceptions and

difficulties, are providing a good example. Some of the first

authors who are collecting misconceptions using an object

oriented programming language (Smalltalk) are Holland, Griffiths

and Woodman [4]. Referencing to them [4], Fleury [2] is

searching for misconceptions using Java as a programming

language. Ragonis and Ben-Ari [7] are investigating

misconceptions based among others on Holland, Griffiths and

Woodman [4] and Fleury [2]. Danielsiek, Paul and Vahrenhold

[1] – referencing to Holland, Griffiths, Woodman [4], Ragonis

and Ben-Ari [7] – are analyzing misconceptions on complex data

structures like heaps and binary search trees.

Our major interest is to unveil underlying intuitive rules of

misconceptions. Gal-Ezer and Zur [3] succeeded in connecting

intuitive rules of science and mathematics to intuitive rules of

computer science which lead to misconceptions in both domains.

They discovered among others the basic alternative conceptions ‘a

shorter program (in terms of code lines) is more efficient’

following the intuitive rule ‘more of A, more of B’ [9] and ‘two

programs containing the same statements (even if in different

order) are equally efficient’ following the intuitive rule ‘same A,

same B’ [9]. However, they tested high school students using

© ACM, 2015. This is the author's version of the work. It is

posted here by permission of ACM for your personal use. Not

for redistribution. The definitive version was published in

WiPSCE ’15, Proceedings of the 10th Workshop in Primary and

Secondary Computing Education (pp. 73-75).

http://dx.doi.org/10.1145/2818314.2818326

http://dx.doi.org/10.1145/2818314.2818326

rather complex C programs. These relatively complex programs

could cause students to fail the task of choosing the most efficient

program out of two given programs with the same lines of code

based on other unknown reasons.

3. SURVEY
As a pretest we interviewed about 60 students who did not pass

the exam to the first course (CS 1) of computer science at our CS

department. This course is an introduction to programming (using

Java as a programming language). We did this pretest to find out

if our Java programs were easy enough to be understood by the

students and to validate if the misconception ‘two programs

containing the same statements (even if in different order) are

equally efficient’ occurred. After positive results (section 5.1) of

this pretest we interviewed about 110 students from a secondary

school (10th grade; age range: 15-17). These students visited four

different school classes and had been taught 40 hours object-

oriented programming (with Java) and modelling at this school

year and about 150 hours computer science (functional modelling,

database systems, etc.) from grade 6 till grade 10 in total. They

did not explicitly learned about runtime analysis.

The students had to answer two questions about runtime. For each

question they had to decide which of two Java methods runs less

statements or whether they both run the same number of

statements. Students had to give written explanations for both

possibilities. In this paper we will discuss the results of the first

question of our interview.

The first question contained two methods with exactly the same

lines, but in different order, which causes a different runtime.

void A(){

 int n = 100;

 output("This program prints n lines.");

 for (int i = 0; i < n; i = i + 1){

 output ("Line No." + i);

 }

 n = n + 500;

}

void B(){

 int n = 100;

 n = n + 500;

 output("This program prints n lines.");

 for (int i = 0; i < n; i = i + 1){

 output ("Line No." + i);

 }

}

output(..) is a shortcut for System.out.println(..) and was

explained to the students.

We expected few students from university to fail the question and

to argue with conclusions which suggest the existence of the

intuitive rule ‘Same A, Same B’, in this case ‘same lines (but) in

different order, same runtime’. But we expected that much more

students from school would argue with this intuitive rule.

4. METHODS
In this section we will briefly describe our methods.

All questions of the pretest and the interview had to be answered

by the students in written form [8]. Both tests were qualitative

tests; therefore students had to give (written) explanations for

every decision.

The qualitative analyzing of the students’ answers was done using

the technique of inductive coding (paraphrasing and generalizing)

by Mayring [6]. We used two independent coders to ensure good

inter-coder reliability [5] after the first 20% of all answers.

Differences in generalizing or categorizing were discussed

afterwards and where appropriately corrected.

5. RESULTS

5.1 Pretest results
In this section we present the results of the evaluation of the first

question of our pretest and test.

The pretest was quite successful; most students understood the

Java programs. Just 7 students out of 60 (nearly 12%) answered

that both methods (method A and method B) are executing the

same number of computational steps. One student answered:

“Same number of steps. Just the order of the statements is

different.” This corresponds exactly to the alternative conception

‘two programs containing the same statements (even if in different

order) are equally efficient’ [3].

5.2 Interview results
After our pretest we were sure that our Java programs were not

too complex to be understood and we expected students from

secondary school to fail the questions and to argue with

conclusions which suggest the existence of the intuitive rule

‘Same A, Same B’.

5.2.1 No answer
Indeed just 9 out of 110 (less than 10%) students did not answer

the first question, so we conclude that the Java programs were not

too complex.

5.2.2 Method A has a shorter runtime (correct

answer)
53 out of 110 (nearly 50%) students answered correctly that

methods B runs more computational steps than method A and

most of them were arguing that the maximum of the counter

variable in methods B was increased before executing the loop

statement and therefore B was computing 500 more steps than A.

5.2.3 Method A has a longer runtime
16 students (nearly 15%) answered that method A runs more

computational steps than method B. Most of these 16 students did

not give a detailed reason for their answer. But 4 student answers

were quite interesting: “I believe that A is computing more steps

than B, because n = n + 500 is at the end of the method.”

(No. 120), “method A is executing more steps than B, because in

method A the statement 'n=n+500;' comes at the end of the

method.” (No. 46), “a is computing more steps, because the

addition is after the loop.” (No. 59) and “Method A: the loop is

repeated 100 times and after this another 500 times, whereas in B

n is increased to 500 before the loop.” (No. 30). These students

might think that an increase of the maximum of the counter

variable after the loop still effects the number of repetitions. In the

next section (5.2.4) we give another example of a student answer,

which is very similar to the student answer No. 30. This could be

a hint to a possible alternative conception which we did not have

in mind before and did not find in recent literature.

5.2.4 Equal runtime
That Method A and Method B are executing the same number of

computational steps was given as an answer by 32 of 110 students

(nearly 30%). 23 of these 32 students argued that both methods

have the same statements but only in a different order. “Both

same; because they have the same statements, but they are

executed in a different order.” (No. 114), “I believe that both

methods are executing the same number of statements, because it

does not matter where n=n+500 is written.” (No. 119), “It does

not have an effect in which line a statement is written.” (No. 85),

“Same number of steps! Both algorithms are equal, with the

exception of order” (No. 29) and “Both are executing the same

amount of statements, because both methods are nearly equal,

with the exception of n = n + 500 which is done later in A.” (No.

62). This was exactly the alternative conception “Same A, Same

B”, which Stavy and Tirosh [9] discovered in didactics of

mathematics and science and which Gal-Ezer and Zur [3] tried to

connect to didactics of computer science.

8 of these 32 students explained that the runtime should be equal,

because both methods have the same number of lines: “both

same; because they have the same number of statements.”

(No. 96) and “both execute the same number of steps, because the

number of the statements in A and B is the same.” (No. 58). This

alternative conception is also mentioned by Gal-Ezer and Zur [3]

(‘same number of statements, same efficiency’) and is also

fulfilling the intuitive rule ‘Same A, Same B’.

Quite interesting explanations were given by 2 of these 32

students: “Method A and method B are executing the same

number of statements, because both are using the same values.”

(No. 50) and “I believe that both methods are executing the same

number of statements, because method A is printing 100 lines first

and later another 500 lines; whereas method B is printing

directly 600 lines.” (No. 107). The alternative conception of the

first student fulfills also the intuitive rule “Same A, Same B”, but

with values of variables instead of number of lines and the second

student is arguing very similar to the 4 students from above

(5.2.3), who could have thought that method A is computing more

steps, because the later increase of the counter variable still effects

the loop.

3 of these 32 students answered that both methods are executing

the same number of computational steps, because both are using

iterations with a fixed number of iterations. They recognize that

both iterations do not have a termination condition – like a

while(..) – but a fixed number of iterations. Unfortunately, a fixed

number of iterations does not mean that both ‘fixed numbers’ are

equal. “because both methods contain iterations with fixed

number of iterations.” (No. 116) and “because both are using

iterations with fixed number of iterations.” (No. 115). This

alternative conception could also be an indicator for the

underlying intuitive rule ‘Same A, Same B’, because if both

methods are using the same kind of iterations (loop/for instead of

while) they have the same number of iteration steps.

6. DISCUSSION
The evaluation of the first question of our test verified the

existence of alternative conceptions or so-called misconceptions,

which are following the intuitive rule ‘same A, same B’ [9].

Despite the very simple and not complex algorithm the alternative

conceptions ‘two programs containing the same statements (even

if in different order) are equally efficient’ [3], ‘same number of

statements, same efficiency’ [3] and ‘the same kind of iteration is

equally efficient’ occur. The last alternative conception is

completely new to us and was not described by Gal-Ezer and Zur

[3].

Therefore, the intuitive rule ‘same A, same B’ should be taken

seriously as a possible barrier to learning.

Furthermore, another alternative conception emerges: ‘The

increase of a counter variable after a loop still effects the loop’.

This alternative conception may not follow an intuitive rule, but

could also explain problems with loops and runtime.

7. FUTURE WORK
As a next step we are going to evaluate the student answers of the

remaining questions and compare them to the above mentioned

results of this paper. On the one hand we hope to generalize the

alternative conception ‘two programs containing the same

statements (even if in different order) are equally efficient’ to ‘two

programs containing the same number of lines and similar (but

not same) statements are equally efficient’ and on the other hand

we want to construct a system of categories of misconceptions and

their underlying intuitive rules including the misconceptions from

this paper. Assistance and tools for teachers and instructors to

prevent learners from alternative conceptions will be developed

with the help of this system.

8. REFERENCES
[1] Danielsiek, H., Paul, W., Vahrenhold, J. 2012. Detecting and

understanding students’ misconceptions related to algorithms

and data structures. In Proc. 43rd SIGSCE Comp. Sci. Ed.,

pp. 21-26.

[2] Fleury, A. E. 2000. Programming in Java: Student-

constructed rules. SIGCSE Bulletin, 32(1), 197 – 201.

[3] Gal-Ezer, J., Zur, E. 2003. The efficiency of algorithms–

misconceptions. Computers & Education, 42(3), 215-226.

[4] Holland, S., Griffiths, R., Woodman, M. 1997. Avoiding

Object Misconceptions. SIGCSE Bulletin, 29(1), 131-134.

[5] Mayring, P. 2000. Qualitative Content Analysis, Forum

Qualitative Sozialforschung, 1 (2), Art. 20.

[6] Mayring, P. Qualitative Inhaltsanalyse: Grundlagen und

Techniken 2008, Beltz, 2008.

[7] Ragonis, N., Ben-Ari, M., 2005. A long-term investigation of

the comprehension of OOP concepts by novices. Computer

Science Education, 15(3), 203-221. DOI=

http://dx.doi.org/10.1080/08993400500224310

[8] Schiek, D. 2014. The Written Interview in Qualitative Social

Research. Zeitschrift für Soziologie, 43(5), 379-395.

[9] Stavy, R., Tirosh, D. 1996. Intuitive rules in science and

mathematics: the case of 'more of A-more of B'.

International Journal of Science Education, 18(6), 653-6.

https://www.dict.cc/englisch-deutsch/seriously.html

