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Summary 
In the first IBIS issue (2023), Michael Hielscher introduced SoekiaGPT, a didactic 
language model based on n-grams. It generates similar-sounding but nonsensical 
texts from 25 Grimm fairy tales. His idea of explaining the operating principles and 
characteristics of generative artificial intelligence using simple Markov chains and 
hallucinating fairy tales (sic!) instead of Large Language Models or opaque neural 
networks excites me. I wondered if it's possible to further simplify the principle so that 
learners can program something like SoekiaGPT themselves, even in a graphical 
programming language like Snap!, which I am involved in developing. 

The result is a small program with only two custom blocks and a few scripts. It allows 
users to generate amusing texts and, in the process, learn about programming with 
larger datasets. And if one rearranges the components a bit differently, something 
even more astonishing happens: The program can learn to generate music or 
images. 

 

Introduction 
The Snap!GPT project consists of three parts: Example data (in this case, fairy tales) 
is loaded and dissected to create a language model, a kind of database. 
Subsequently, a function is developed that searches for an entry (here: a word) from 
the data model that plausibly continues an existing sequence (here: previous words). 
Finally, the entire process can be made interactive for users. 

Snap! is a graphical, block-based programming language collaboratively developed 
by the University of California Berkeley and SAP for computer science education in 
schools and universities. In the United States, it is used to teach the College Board-
certified "The Beauty and Joy of Computing" curriculum. There is also a growing 
community in Germany. Snap! runs in web browsers, is free, and open source. 

 

Analyzing Data 
Files in various common formats (txt, csv, json) can be loaded in Snap! by dragging 
them into the Snap! window with a mouse.  Alternatively, they can be selected from 
the File menu using the "Import…" option. Snap! creates a global variable with the 
file name and assigns its content as the value. Structured data (e.g., csv or json) is 
automatically formatted into lists or tables, while plain texts remain unchanged as a 
whole. Because I appreciate Hielscher's example with the fairy tales, I also selected 
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a few websites with Grimm Brothers' fairy tales and downloaded 30 stories as txt 
files or copied them from the browser into local text files. I combined the individual 
texts into a single large file and loaded it into Snap!. 

The "split" block can be used to break down a text into various components. I split 
the collected fairy tales by "word" to obtain a large list with the sequence of all words 
(see Fig. 1). 

 

Figure 1: Create a list of words in Snap! using the “split” block.  

 

The highlight of the language model described by Hielscher is the breakdown of this 
long word list into multiple versions with many small entries consisting of word pairs, 
triplets, quadruplets, and quintuplets, known as n-grams. For this purpose, I use a 
function with two parameters: "n" for the desired length of the chains and "corpus" for 
the initial list of consecutive words, which I have defined in Snap! 

 

N-grams can be implemented in Snap! in various ways, such as imperatively with 
commands and even hyper-dimensionally with vector operations. I opted for a 
functional variant because it is the most expressive, requiring the fewest blocks, and 
accomplishes the task quickly (Fig. 2). Those willing to accept slightly longer 
runtimes can also work with loops and variables just as effectively. 
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Next, n-grams are calculated for word chains ranging from length one to five and 
stored in a language model. For this, I created another global variable named 
"model." It should be assigned a list whose elements are the results of the 
corresponding "n-grams" function. The first element is a list of all individual words, 
followed by an element containing all word pairs, the third element being a list of all 
3-link chains, and so forth. This can be achieved, for example, with a for loop and a 
loop variable. Once again, I opted for a short functional script (see Fig. 3). 

 

Figure 3 The final Snap! script for "training" the statistical language model. 

 

 

 

 

 

 

Figure 2 Example for a custom "n-gram" function in Snap! 
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It is sufficient to click the script once with the mouse and execute it. After a (hopefully 
short) period, the language model is ready for use. To verify this, the model can be 
queried with the "item of" block for different n values from 1 to 5. Each time, a list or 
table should be displayed, with the number of columns matching its position in the 
model (see Fig. 4). 

 

Figure 4 Inspecting the language model in Snap! The number of columns in the table should 
match the index selected in the “item of” block. 

 

Typically, frequency analyses are conducted at this point, examining how often a 
word or a specific n-gram appears in the sources. To simplify the project, I skipped 
this step and instead just write word chains that occur multiple times into the model 
multiple times. When the next word is selected randomly later, more abundant word 
chains will be picked with a higher frequency. Here, probability calculus from math 
class can be addressed.  

 

 

 

 

Tip: Marking a variable as "Non-Persistent" 

When saving a Snap! project, the values of all global variables are retained. This has the 
advantage that, for example, you don't have to re-import the file with the fairy tales every 
time you continue working on the project. The same goes for the model of n-grams. 
However, this can lead to the project accumulating large amounts of data, potentially 
exceeding the storage limit for the cloud. To prevent this, individual variables, such as 
the model, can be marked as "non-persistent" in their context menu in the palette. Of 
course, when reopening the project, you will need to execute the script with the n-grams 
(Fig. 3) again to restore the model. 
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Continuing a Sequence 
Next, the task is to complete a chain of words to a sentence using the language 
model. Specifically, this means searching for a word in the model that can be added 
to a list of previous words without resulting in gibberish. This seems like a 
challenging task, as it requires extensive knowledge of language, grammar, 
sentence components, cases, forms, exceptions, and familiarity with punctuation and 
capitalization. The model, however, knows nothing about any of these. Nevertheless, 
it has a vast reservoir of words that have appeared after other words. These 
correlations are sufficient to form somewhat authentic-sounding sentences. 

The Markov chain text generator algorithm takes the last "n" words of the started 
story as token and first retrieves all entries in the model that are exactly one word 
longer than the token. From these entries, it retains those that match the token for 
the last “n-1” words (i.e. except for the last word). One of these selected candidates 
is randomly chosen, and its last word is returned as the result. If no candidate is 
found, the search is repeated with successively shorter tokens until a random word is 
returned from the 1-gram list eventually. 

When generating language, the token length for the search is occasionally chosen at 
random to make the system more "creative," avoiding the reassembling of chopped-
up original texts. In Hielscher's SoekiaGPT, this can be configured using a 
"temperature" parameter. I have omitted this detail to facilitate the reprogramming. 
Additionally, I find it interesting if the generated sentences still reveal their origin, i.e., 
from which fairy tale they were taken. SoekiaGPT visualizes the sources in the 
generated text with colors, but I have also skipped this. 

For the implementation of the custom “next item in” function in Snap!, I opted for a 
classic imperative variant this time (see Fig. 5). 
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Figure 5 Example for a custom query function for the simplified Markov chain text generator.  

 

You can test this block by providing it with a list of a few words and a data model, 
then click on it to execute (see Fig. 6). 

 

 

Figure 6 Testing the query block with an exemplary list. 
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Designing an Interactive Program 
With the existing building blocks, you can now create a small program that a user 
can interact with. For this, I created another global variable named "story" and 
considered the following user guidance: When the green flag is clicked, the user is 
prompted to enter the first words of a new fairy tale. The program generates a word 
list from this input, assigns it to the "story" variable, adds the next word to the story, 
and outputs it as running text. Each time the user presses the spacebar, another 
word is added to the story, and the output is updated. 

The completed program consists of four small scripts, the model script described 
above (Fig. 3), and an interactive text generator (see Fig. 7). 

 

Figure 7 The finished text generator in Snap! 

Tip: Comparing Texts and Lists 

Snap! supports modeling projects related to language by allowing the testing of structural 
equality between lists and tables. Two or more lists can be tested for equality of all their 
elements, regardless of their rank (the depth of their nesting), without the need to 
individually handle the elements, as required in some other programming languages. 
Additionally, Snap! defaults to ignoring case sensitivity when comparing texts. Both 
features follow the example of the LOGO programming language, which originally 
focused on word- and sentence-based language projects. 
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If you try it out and enter the start a new fairy tale when prompted, input something 
like "Once upon a time,". Then repeatedly press the spacebar to generate different 
sentences and stories. For example: 

 

“Once upon a time a king and a queen who lived happily 
together and had twelve children, but they were all boys. Then 
said the king to his wife, if the thirteenth child which you 
are about to bring into the world, is a girl, the twelve boys 
shall die, in order that her shuttle might be stained with 
blood, she stuck her hand into a thorn bush and pricked her 
finger.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transfer: Generalizing the Principle 
Programming a text generator yourself is enjoyable and thought-provoking. Its 
creations are both surprisingly realistic and complete nonsense, interspersed with 
clearly plagiarized passages. You can play with the parameters, for example, create 
the model with n-gram lengths only up to 2 or 3 instead of the numbers from 1 to 5, 
and observe how it affects the generated texts. Instead of fairy tales, you can use 
other templates and then generate texts "in the style" of those different sources. This 
(obviously) works even with texts in different languages. In Snap!, you can import 
any number of files as variables and replace the variable in the script from which the 
language model is created. Multiple models with different contents can be managed 
in the same project, and you can choose based on which model the next element is 
determined.  

Tip: Outputting a word list as text 

Because the language model is based on individual words, the value of the variable 
"story" is also a word list. To output this as text, all the words need to be concatenated 
with spaces in between. This can be done in Snap! in various ways. The simplest method 
is to use the "length of list" block and set the option to "text" instead of "length." 

Tip: Letting the stage "speak" 

In Snap!, every object has a "say" block, which allows it to output information in a speech 
bubble, including the stage. The speech bubble of the stage is larger than that of other 
objects and can display a longer excerpt of the story. You can export the content from a 
speech bubble by right-clicking it and select export. This will save the output as a file to 
your downloads folder, which is useful for sharing the generated story with someone else. 
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An intriguing insight is that the content of the processed source data doesn't matter 
at all, only that the data points are in a specific order. Such sequences occur not only 
in texts but everywhere "lists" in the broadest sense are used. Shopping lists: People 
who bought this often buy that. Playlists: Someone who listens to or watches this 
may also be interested in that. Disease progressions: Those with these symptoms 
often suffer from that. Game moves: After this chess move, successful players often 
choose to do that. The building blocks used to break down example data into n-
grams and plausibly complete incomplete sequences should, therefore, be 
applicable to any other context with similar patterns. 

 

Letters Instead of Words 
Instead of separating fairy tales by words, you can also split them by letters. To do 
this, you just need to select the "letters" option in the two "split" blocks in the model 
script (Fig. 3) and the green flag script (Fig. 7). Additionally, you must replace the red 
"text from list" block in the "When I receive 'next'" script with a green "join" block 
because otherwise spaces will be inserted between the letters. Now click on the 
model script (Fig. 3) once to create a new model based on letters - this takes a bit 
longer because there are many more letters than words - and then your program -
slowly - generates plausible words. You can make this significantly faster by using 
fewer source data. Thirty fairy tales are just enough to form realistic sentences, but 
for plausible words, a single fairy tale or a single newspaper article is sufficient. The 
language model is then much smaller and quicker to search through. 

 

Music Instead of Language 
I was curious whether the principle of "guess what might come next" can be made 
not only visible but also audible. For this, I painstakingly transcribed 20 children's 
songs from "My Bonnie is over the Ocean" to "Twinkle, Twinkle Little Star" to into 
MIDI notes in another Snap! project. I made sure to use the same key (C major) 
consistently so that the melodies are more similar to each other. To play and 
experiment with the melodies in Snap!, you can use a loop with the "play note" block. 
The "play note" block has two inputs, the pitch, and the number of beats, indicating 
how long the note should last. Therefore, each note requires a list containing these 
two values. A song as a sequence of notes thus becomes a two-dimensional list or a 
two-column table (see Fig. 8). 
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Figure 8: Playing the German children’s song „Kuckuck, Kuckuck, ruft’s aus dem Wald“ in Snap! 

 

I concatenated all songs, saved them as a CSV file, and imported it into my 
SnapGPT project. 

To create a music model from these notes, I reused the same script I used earlier to 
generate the language model from the fairy tales (Fig. 3). Even though the data now 
means something different and is in a different form (multi-dimensional), the principle 
remains the same. The "n-grams" function block only expects a corpus in the form of 
a list. It doesn't matter how many dimensions this list has. 

Now, melodies can be improvised in real-time using this model. Instead of letting the 
user press a key for the next note, I opted for an infinite loop for this purpose (see 
Fig. 9). 

 

 

Figure 9 : The same building blocks that were used for the text generator can be used to 
create a melody improvisation program in Snap! 
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Scribbling Skylines  
How about images? Do they have the “guess what’s next”? Other than words in a 
story or notes in a melody, elements of a picture aren’t ordered in a row but in a 
plane. Sketching however is sequential. The way of a pencil on a paper consists of a 
succession of directional decisions.  
Encouraged by the melodies that were created by throwing together chopped up 
children’s songs, I created a sketching program that records the changes in 
directions in regular intervals.  

To keep it simple, I focused on the data of a single stroke, i.e. from putting the pen 
down to putting the pen up again. This results in a list of numbers, a direction for 
each line segment. This list of directions can then be used similarly to the fairy tales 
and children’s songs to create a data model of n-grams (Fig. 10).  

 

Figure 10: Example for a sketching program that creates a sketch from a list of changes of 
direction and calculates a data model from that.  

 

 

 



12 
 

You can click on the script to start scribbling something on the stage using a mouse 
or track pad. You could try writing a word in cursive handwriting (Fig. 11).  

 

Figure 11: The sketching program can only create sketches that consist of a single stroke, 
e.g. a word in cursive writing 

 

Subsequently, the model fantasizes new doodles based on the initial sketch, if – 
once more – the query block that suggests a next plausible element in an arbitrary 
sequence is used (Fig. 12 and Fig. 13).  

 

Figure 12: Snap! can use the same two blocks to fantasize stories, melodies and doodles. 
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Figure 13: Exemplary doodle based on the written "hallo" in Fig. 11 

 

Only being able to draw single strokes limits the abilities of the project to, e.g. when 
imitating your own handwriting.  
While we played with the scribbling program, my friend Bernat Romagosa brought up 
the idea to try it with waves and angular shapes instead of letters and circles. That 
way, the program creates more “organized” structures that remind of a horizon at the 
sea or a skyline of a city (Fig. 14).  

 

 

Figure 14 Example for a “skyline”, the top sketch is the manually created template, the 
bottom sketch is the version generated by Snap!.  
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Conclusion 
The completed Snap! project can be found at https://tinyurl.com/SnapGPT-IBIS-EN. 
It contains the custom Snap! blocks needed for the project as well as the collection 
of 30 fairy tales and 20 children’s songs. The data can be exported in csv format 
from the context menu of the variable watcher on the stage and provided to the 
learners.  

Programming something like this GPT in computer science classes is certainly within 
the realm of possibility. The project can be implemented in various ways, and 
conveys skills that are useful in other contexts, such as data transformation and 
filtering. I personally appreciate that the metaphor of "building blocks" plays a role in 
multiple aspects: the two blocks for the text generator can be directly applied to 
improvising a melody or scribbling a silhouette without having to modify them. For 
underlying idea of the n-grams, it doesn't matter what data they represent. 

Many thanks to Michael Hielscher for the brilliant idea of introducing the challenging 
topic of generative AI pedagogically using a Markov chain text generator, for his 
beautiful SoekiaGPT software, and for his guidance and inspiration in the playful 
exploration presented here in Snap!. 
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