Snap!GPT -
Building Blocks for Generative Artificial

Intelligence
Jens Monig, SAP SE, Walldorf

Summary

In the first IBIS issue (2023), Michael Hielscher introduced SoekiaGPT, a didactic
language model based on n-grams. It generates similar-sounding but nonsensical
texts from 25 Grimm fairy tales. His idea of explaining the operating principles and
characteristics of generative artificial intelligence using simple Markov chains and
hallucinating fairy tales (sic!) instead of Large Language Models or opaque neural
networks excites me. | wondered if it's possible to further simplify the principle so that
learners can program something like SoekiaGPT themselves, even in a graphical
programming language like Snap!, which | am involved in developing.

The result is a small program with only two custom blocks and a few scripts. It allows
users to generate amusing texts and, in the process, learn about programming with
larger datasets. And if one rearranges the components a bit differently, something
even more astonishing happens: The program can learn to generate music or
images.

Introduction

The Snap!GPT project consists of three parts: Example data (in this case, fairy tales)
is loaded and dissected to create a language model, a kind of database.
Subsequently, a function is developed that searches for an entry (here: a word) from
the data model that plausibly continues an existing sequence (here: previous words).
Finally, the entire process can be made interactive for users.

Snap! is a graphical, block-based programming language collaboratively developed
by the University of California Berkeley and SAP for computer science education in
schools and universities. In the United States, it is used to teach the College Board-
certified "The Beauty and Joy of Computing" curriculum. There is also a growing
community in Germany. Snap! runs in web browsers, is free, and open source.

Analyzing Data

Files in various common formats (txt, csv, json) can be loaded in Snap! by dragging
them into the Snap! window with a mouse. Alternatively, they can be selected from
the File menu using the "Import..." option. Snap! creates a global variable with the
file name and assigns its content as the value. Structured data (e.g., csv or json) is
automatically formatted into lists or tables, while plain texts remain unchanged as a
whole. Because | appreciate Hielscher's example with the fairy tales, | also selected

1

a few websites with Grimm Brothers' fairy tales and downloaded 30 stories as txt
files or copied them from the browser into local text files. | combined the individual
texts into a single large file and loaded it into Snap!.

The "split" block can be used to break down a text into various components. | split
the collected fairy tales by "word" to obtain a large list with the sequence of all words
(see Fig. 1).

58505 items

swabians

| Seven |
| swablans |
| were |
_once |
| The |
| first

split 30 fairy tales by ['hd B

Figure 1: Create a list of words in Snap! using the “split” block.

The highlight of the language model described by Hielscher is the breakdown of this
long word list into multiple versions with many small entries consisting of word pairs,
triplets, quadruplets, and quintuplets, known as n-grams. For this purpose, | use a
function with two parameters: "n" for the desired length of the chains and "corpus" for
the initial list of consecutive words, which | have defined in Snap!

N-grams can be implemented in Snap! in various ways, such as imperatively with
commands and even hyper-dimensionally with vector operations. | opted for a
functional variant because it is the most expressive, requiring the fewest blocks, and
accomplishes the task quickly (Fig. 2). Those willing to accept slightly longer
runtimes can also work with loops and variables just as effectively.

Block Editor

n # grams of corpus

report
map item o ®+(n© of (corpus

over (1] length of ‘corpus

OK Apply Cancel

Figure 2 Example for a custom "n-gram" function in Snap!

Next, n-grams are calculated for word chains ranging from length one to five and
stored in a language model. For this, | created another global variable named
"model." It should be assigned a list whose elements are the results of the
corresponding "n-grams" function. The first element is a list of all individual words,
followed by an element containing all word pairs, the third element being a list of all
3-link chains, and so forth. This can be achieved, for example, with a for loop and a
loop variable. Once again, | opted for a short functional script (see Fig. 3).

set model to

~ =grams of (.|l o

Figure 3 The final Snap! script for "training" the statistical language model.

It is sufficient to click the script once with the mouse and execute it. After a (hopefully
short) period, the language model is ready for use. To verify this, the model can be
queried with the "item of" block for different n values from 1 to 5. Each time, a list or
table should be displayed, with the number of columns matching its position in the
model (see Fig. 4).

58503 A B C
1 Seven swabians were
2 swabians were once
3 were once together.
4 once together. The
5 together. The first
6 The first was
7 first was master
- 8 was master schulz, //J

Figure 4 Inspecting the language model in Snap! The number of columns in the table should
match the index selected in the “item of” block.

Typically, frequency analyses are conducted at this point, examining how often a
word or a specific n-gram appears in the sources. To simplify the project, | skipped
this step and instead just write word chains that occur multiple times into the model
multiple times. When the next word is selected randomly later, more abundant word
chains will be picked with a higher frequency. Here, probability calculus from math
class can be addressed.

Tip: Marking a variable as "Non-Persistent”

When saving a Snap! project, the values of all global variables are retained. This has the
advantage that, for example, you don't have to re-import the file with the fairy tales every
time you continue working on the project. The same goes for the model of n-grams.
However, this can lead to the project accumulating large amounts of data, potentially
exceeding the storage limit for the cloud. To prevent this, individual variables, such as
the model, can be marked as "non-persistent” in their context menu in the palette. Of
course, when reopening the project, you will need to execute the script with the n-grams
(Fig. 3) again to restore the model.

Continuing a Sequence

Next, the task is to complete a chain of words to a sentence using the language
model. Specifically, this means searching for a word in the model that can be added
to a list of previous words without resulting in gibberish. This seems like a
challenging task, as it requires extensive knowledge of language, grammar,
sentence components, cases, forms, exceptions, and familiarity with punctuation and
capitalization. The model, however, knows nothing about any of these. Nevertheless,
it has a vast reservoir of words that have appeared after other words. These
correlations are sufficient to form somewhat authentic-sounding sentences.

The Markov chain text generator algorithm takes the last "n" words of the started
story as token and first retrieves all entries in the model that are exactly one word
longer than the token. From these entries, it retains those that match the token for
the last “n-1" words (i.e. except for the last word). One of these selected candidates
is randomly chosen, and its last word is returned as the result. If no candidate is
found, the search is repeated with successively shorter tokens until a random word is
returned from the 1-gram list eventually.

When generating language, the token length for the search is occasionally chosen at
random to make the system more "creative," avoiding the reassembling of chopped-
up original texts. In Hielscher's SoekiaGPT, this can be configured using a
"temperature" parameter. | have omitted this detail to facilitate the reprogramming.
Additionally, | find it interesting if the generated sentences still reveal their origin, i.e.,
from which fairy tale they were taken. SoekiaGPT visualizes the sources in the
generated text with colors, but | have also skipped this.

For the implementation of the custom “next item in” function in Snap!, | opted for a
classic imperative variant this time (see Fig. 5).

Block Editor

next item in sequence based on model

script variables token candidates

for n)= length of ‘model - P to €D

set token to
. length of (sequence
item

length of (sequence

sequence

set candidates to

keep items item

n +@

report item of candidates

report| item @K of item of ‘model

OK Apply Cancel
/4

Figure 5 Example for a custom query function for the simplified Markov chain text generator.

You can test this block by providing it with a list of a few words and a data model,
then click on it to execute (see Fig. 6).

with
next item in list [[based on model "—)

Figure 6 Testing the query block with an exemplary list.

Tip: Comparing Texts and Lists

Snap! supports modeling projects related to language by allowing the testing of structural
equality between lists and tables. Two or more lists can be tested for equality of all their
elements, regardless of their rank (the depth of their nesting), without the need to
individually handle the elements, as required in some other programming languages.
Additionally, Snap! defaults to ignoring case sensitivity when comparing texts. Both
features follow the example of the LOGO programming language, which originally
focused on word- and sentence-based language projects.

Designing an Interactive Program

With the existing building blocks, you can now create a small program that a user
can interact with. For this, | created another global variable named "story" and
considered the following user guidance: When the green flag is clicked, the user is
prompted to enter the first words of a new fairy tale. The program generates a word
list from this input, assigns it to the "story" variable, adds the next word to the story,
and outputs it as running text. Each time the user presses the spacebar, another
word is added to the story, and the output is updated.

The completed program consists of four small scripts, the model script described
above (Fig. 3), and an interactive text generator (see Fig. 7).

add next item in story based on model to story

say text of story

Ldm

m»J:'

Figure 7 The finished text generator in Snap!

If you try it out and enter the start a new fairy tale when prompted, input something
like "Once upon a time,". Then repeatedly press the spacebar to generate different
sentences and stories. For example:

“Once upon a time a king and a queen who lived happily
together and had twelve children, but they were all boys. Then
said the king to his wife, if the thirteenth child which you
are about to bring into the world, is a girl, the twelve boys
shall die, in order that her shuttle might be stained with
blood, she stuck her hand into a thorn bush and pricked her
finger.”

Tip: Outputting a word list as text

Because the language model is based on individual words, the value of the variable
"story" is also a word list. To output this as text, all the words need to be concatenated
with spaces in between. This can be done in Snap! in various ways. The simplest method
is to use the "length of list" block and set the option to "text" instead of "length."

Tip: Letting the stage "speak”

In Snap!, every object has a "say" block, which allows it to output information in a speech
bubble, including the stage. The speech bubble of the stage is larger than that of other
objects and can display a longer excerpt of the story. You can export the content from a
speech bubble by right-clicking it and select export. This will save the output as a file to
your downloads folder, which is useful for sharing the generated story with someone else.

Transfer: Generalizing the Principle

Programming a text generator yourself is enjoyable and thought-provoking. Its
creations are both surprisingly realistic and complete nonsense, interspersed with
clearly plagiarized passages. You can play with the parameters, for example, create
the model with n-gram lengths only up to 2 or 3 instead of the numbers from 1 to 5,
and observe how it affects the generated texts. Instead of fairy tales, you can use
other templates and then generate texts "in the style" of those different sources. This
(obviously) works even with texts in different languages. In Snap!, you can import
any number of files as variables and replace the variable in the script from which the
language model is created. Multiple models with different contents can be managed
in the same project, and you can choose based on which model the next element is
determined.

An intriguing insight is that the content of the processed source data doesn't matter
at all, only that the data points are in a specific order. Such sequences occur not only
in texts but everywhere "lists" in the broadest sense are used. Shopping lists: People
who bought this often buy that. Playlists: Someone who listens to or watches this
may also be interested in that. Disease progressions: Those with these symptoms
often suffer from that. Game moves: After this chess move, successful players often
choose to do that. The building blocks used to break down example data into n-
grams and plausibly complete incomplete sequences should, therefore, be
applicable to any other context with similar patterns.

Letters Instead of Words

Instead of separating fairy tales by words, you can also split them by letters. To do
this, you just need to select the "letters" option in the two "split" blocks in the model
script (Fig. 3) and the green flag script (Fig. 7). Additionally, you must replace the red
"text from list" block in the "When | receive 'next™ script with a green "join" block
because otherwise spaces will be inserted between the letters. Now click on the
model script (Fig. 3) once to create a new model based on letters - this takes a bit
longer because there are many more letters than words - and then your program -
slowly - generates plausible words. You can make this significantly faster by using
fewer source data. Thirty fairy tales are just enough to form realistic sentences, but
for plausible words, a single fairy tale or a single newspaper article is sufficient. The
language model is then much smaller and quicker to search through.

Music Instead of Language

| was curious whether the principle of "guess what might come next" can be made
not only visible but also audible. For this, | painstakingly transcribed 20 children's
songs from "My Bonnie is over the Ocean" to "Twinkle, Twinkle Little Star" to into
MIDI notes in another Snap! project. | made sure to use the same key (C major)
consistently so that the melodies are more similar to each other. To play and
experiment with the melodies in Snap!, you can use a loop with the "play note" block.
The "play note" block has two inputs, the pitch, and the number of beats, indicating
how long the note should last. Therefore, each note requires a list containing these
two values. A song as a sequence of notes thus becomes a two-dimensional list or a
two-column table (see Fig. 8).

set tempo to @FLP bpm

for each note in

list list 2| list 1) list 2| 586201
54160 56201 list)) 5462 list (A 11
list 21 list 2| list (A £ list list 1|

15365 list (Y4 A list (A 0} list (Y4 A list (A 0}
586702 list (A £ list (A 1} list (1Y) list (A 0
15360

play note item of (note for item @R of note

Figure 8: Playing the German children’s song , Kuckuck, Kuckuck, ruft’s aus dem Wald“ in Snap!

| concatenated all songs, saved them as a CSV file, and imported it into my
SnapGPT project.

To create a music model from these notes, | reused the same script | used earlier to

generate the language model from the fairy tales (Fig. 3). Even though the data now

means something different and is in a different form (multi-dimensional), the principle
remains the same. The "n-grams" function block only expects a corpus in the form of
a list. It doesn't matter how many dimensions this list has.

Now, melodies can be improvised in real-time using this model. Instead of letting the
user press a key for the next note, | opted for an infinite loop for this purpose (see
Fig. 9).

script variables music model song next note

set tempo to @FLP bpm

set music'model to
map

set song to list
forever

set nextnote to nextitem in song based on music model

»

play note item @K of next note for item @& of next note beats

>

add ‘next note to ‘song

Figure 9 : The same building blocks that were used for the text generator can be used to
create a melody improvisation program in Snap!

10

Scribbling Skylines

How about images? Do they have the “guess what’s next”? Other than words in a
story or notes in a melody, elements of a picture aren’t ordered in a row but in a
plane. Sketching however is sequential. The way of a pencil on a paper consists of a
succession of directional decisions.

Encouraged by the melodies that were created by throwing together chopped up
children’s songs, | created a sketching program that records the changes in
directions in regular intervals.

To keep it simple, | focused on the data of a single stroke, i.e. from putting the pen
down to putting the pen up again. This results in a list of numbers, a direction for
each line segment. This list of directions can then be used similarly to the fairy tales
and children’s songs to create a data model of n-grams (Fig. 10).

script variables lines

wait until . mouse down?

set pen size to §&)

go to mouse-pointer
pen down

set lines to list

repeat until. not mouse down?

(WYL R distance .- to mouse-pointer >13

add direction to mouse-pointer to (lines

2

point towards mouse-pointer
»

move @ steps

set model to

map

Figure 10: Example for a sketching program that creates a sketch from a list of changes of
direction and calculates a data model from that.

11

You can click on the script to start scribbling something on the stage using a mouse
or track pad. You could try writing a word in cursive handwriting (Fig. 11).

=

Figure 11: The sketching program can only create sketches that consist of a single stroke,
e.g. a word in cursive writing

Subsequently, the model fantasizes new doodles based on the initial sketch, if —
once more — the query block that suggests a next plausible element in an arbitrary
sequence is used (Fig. 12 and Fig. 13).

script variables doodle next line

set doodle to list

go to x: @1 y: @

repeat

set nextline to next item in doodle based on model

>

point in direction ‘next line

move @ steps
)

add ‘next line to ‘doodle

Figure 12: Snap! can use the same two blocks to fantasize stories, melodies and doodles.

12

Figure 13: Exemplary doodle based on the written "hallo" in Fig. 11

Only being able to draw single strokes limits the abilities of the project to, e.g. when
imitating your own handwriting.

While we played with the scribbling program, my friend Bernat Romagosa brought up
the idea to try it with waves and angular shapes instead of letters and circles. That
way, the program creates more “organized” structures that remind of a horizon at the
sea or a skyline of a city (Fig. 14).

L -

Mﬁﬂ“ﬂww

Figure 14 Example for a “skyline”, the top sketch is the manually created template, the
bottom sketch is the version generated by Snap!.

13

Conclusion

The completed Snap! project can be found at https://tinyurl.com/SnapGPT-IBIS-EN.
It contains the custom Snap! blocks needed for the project as well as the collection
of 30 fairy tales and 20 children’s songs. The data can be exported in csv format
from the context menu of the variable watcher on the stage and provided to the
learners.

Programming something like this GPT in computer science classes is certainly within
the realm of possibility. The project can be implemented in various ways, and
conveys skills that are useful in other contexts, such as data transformation and
filtering. | personally appreciate that the metaphor of "building blocks" plays a role in
multiple aspects: the two blocks for the text generator can be directly applied to
improvising a melody or scribbling a silhouette without having to modify them. For
underlying idea of the n-grams, it doesn't matter what data they represent.

Many thanks to Michael Hielscher for the brilliant idea of introducing the challenging
topic of generative Al pedagogically using a Markov chain text generator, for his
beautiful SoekiaGPT software, and for his guidance and inspiration in the playful
exploration presented here in Snap!.

Sources

All websites/links were last checked on December 2, 2023.

Hielscher, Michael, SoekiaGPT — ein didaktisches Sprachmodell (2023), IBIS 01-01-
04

Snap! — Build Your Own Blocks (2023), https://snap.berkeley.edu

The Beauty and Joy of Computing (2023), https://bjc.berkeley.edu

Rosetta Code: Markov chain text generator, draft (2023),
https://rosettacode.org/wiki/Markov chain text generator

License

This article is available under the CC BY NC 4.0 license.
Contact

Jens Monig

SAP Walldorf

jens.moenig@sap.com

14

https://tinyurl.com/SnapGPT-IBIS-EN
https://snap.berkeley.edu/
https://bjc.berkeley.edu/
https://rosettacode.org/wiki/Markov_chain_text_generator
mailto:jens.moenig@sap.com

